G4beamline
User’s Guide

2.16

Tom Roberts
Muons, Inc.

tjrob@muonsinc.com
December 2013

http://gdbeamline.muonsinc.com

Copyright © 2004 — 2013 by Tom Roberts
All rights reserved.

See license and distribution terms in section 1.2.

1/10/14 TIR G4beamline User’s Guide

G4beamline User’s Guide

Contents
I IEEOAUCTION ..ottt ettt e ettt e st e et e e s aeeenseessbeenseeesseesseeesaeenseeenseenseensnesnseesaennne 5
LI.1 QUICK Start GUIACveeiiviiiiiii ettt et e et e et eeeta e e e taeeebaeesasaeeeaseeeeaseeenseeenseens 6
1.2 License and DiStrIDULION.cicuiiriieeiieiieeie ettt ettt e st e ebeesieeebeessaeenbeesseesnseessnesnseens 10
2 BASIC COMNCEPLS .vveeuvieiieeiiieiiieeteesite et estteeteesteeesteessaesaseesseeasseenseesaseenseeasseessesnsaeseesnseessesnseenseesnseensees 11
2.1 Particle tracking in SIMULALIONSceoiieriiiiiiiiie ettt ettt saeeenbeeeees 11
2.2 UNIES cutieiiieiieete ettt ettt et e ettt e et e et e e e et e e st e sabeenbeeeab e e st e enb e e b teenbe e seeeabeeteeeabeeneeenbeeneeenbeeneas 12
B B € 1<74) 11111 OO TUPSRTSRRTRR 12
2.4 COOTAINALESvveeueieiieetieeiieeiee et eteeeteeteeetteeteessteesseeesbeenseeenseenseeanseenseeenseensseenseenseesnseenseesnseenseas 13
2.5 ROTALIONS ..cutiiiieeieeeiie ettt ettt ettt et e et e bt e s b e et e e e st e enseeensaenseeenbeenseesnseenseeenseenseesnseeseesnseensees 16
2.0 IMALEIIALS ..ottt ettt ettt et et e bt e et e et e et e e tteeabeeseeenbeenneeenbeenaes 17
2.7 Electromagnetic FICLAScoouiiiiiiiieiiieieee ettt ettt et et 18
2.8 VISUALIZALIONeeiuiiiiiieiieeiie ettt ettt et e sttt e et e e bt e eabeebeeeabeenseeenseenseesnseeseesnseenseeenseenseas 18
2.9 Obtaining Results — Virtual Detectors and other NTuples.........cccoocvevievinieniiiiniicniicnieeeee 24
2.10 Random NUMDET GENETALOTcccuieriieiieeiieiieeieeiteeteesiteeteetteeteesseesbeesaeesseesseesnseenseesnseesnes 27
211 Tuning the BEAMIINEcciiiiiiiiiiiiieieeie ettt ettt et e e be et eebeesneeenbeenees 27
2.12 The Geantd User INTETTaCE.........ocvuiiiiieiiieiieiece ettt st e e eees 29
213 Event Time LAMIEoouiiiiiiiiieeiieieeie ettt ettt ettt e et esbeeaeeenbeeseeenbeenseesnseensnes 29
2,14 Wall CIOCK LIMIt.....iiiiiiiiiiieeii ettt ettt ettt ettt e et e et e snbeeseeenseesseeenseennnas 29
2.15 Event and Track Numbering (EventID, TrackID).......c.ccccovoiiiiiiniiiiiiiiiieieeeeeeeee e 30
2,16 SIGNALS ..einiiiiie ettt et et e bt e et e e tteenbe e tteeabeeteeenbeenaeeenbeeneas 30
3 Important Values that Affect the Validity and Accuracy of Simulations...........ccccceceveenennenienennnne 31
3.1 PRYSICS LAStuiuiiiiiiiiiiciieiie ettt ettt ettt e et et e et et e et e e bt e eabe e taeenbe e nteenbeennaeenraens 31
3.2 Tracking ACCUIraCy Parameters........cccueiuieiiiiiiieiiieieeciie ettt ettt et siaeste e aeeesbeessaesnseens 31
3.3 Electromagnetic Field Map TOIETANCEcccueeviiiiiiiiieiieiie ettt see e 33
3.4 Secondary Creation Threshold in PhySics PrOCESSESceeviieiieiiiiiiiiniiiciierie et 33
3.5 TTACK CULS .ottt et ettt et e et e e bt e esbe e saesabe e seeeabeeseesnsaenseeesseensnesnsaans 33
3.6 FrINGE FICIAS ...eeoiiieiieciieie ettt ettt ettt st e st e e abe e saesnbeesaeeenbeensaeensaens 34
3.7 Stepping and Hard EAZEScccouiiiiiiiiiiiiiecee ettt st 34
3.8 RAIAIVE DECAYS ..ueviiuiieiiieiieciie ettt ettt ettt e et e tae st e e te e e b e e saeenbeesaeeenbeennaeenreens 34
3.9 MISCRIIANEOUSeeeuieeiiieiie ettt ettt ettt e bt este e e b e e saeeaba e seeeabe e saesnseenseaesseensnesnsaens 35
4 INPUL FIle D@SCIIPIIONuviiiiiiiieiieeieeeie ettt ettt ettt e et et eeteesteeesbeensaeeaseesseesnbeensaeenseenseesnseensnas 36
A1 EXPIESSIONS ..eeuviieuiieiieetieeiteette ettt etteeeteeteeeateeseesaseensaeesseenseeenseenseeanseenseesnseenseesnseeseesnseenseeanseenseas 37
4.2 ElEMENt NAIMNESeeouiieiieiieetieeie ettt ette et e et e seteeteeebeeteesnbeeseeeaseenseesnseeseessseeseesnseenseesnseenseas 37
4.3 PATAIMETETS .eevuvveeiuiieeeiieeeite e et ee e et e et e ettt e ettt e eateeeseteesasteeanseeeesseeenaseeensbeeesbeesnnbeeensseesnnseesnneeesanes 38
4.4 Pillbox Geometry and DIMENSIONS........ccuueriieriieriieiieeieeniie et eiee et esiresreesteesseesseesseesseesnseensnes 40
4.5 Absorber geometry and DIMENSIONSc.cocvieruieriieniieeieeniie et eite et esieeeteesateeaeesseesseesseeesseensnes 41
4.6 COTINETATIC ZEOIMELIYeiiuiiieriiieeeiieeeitteeriteeeiteeestteeetteestteesnteeesaseeesaseeessseeensseeenbeesnseesnseesnseesanes 42
4.7 ENETICQUAA APETTUIEeeiuiieiieeiiieieeeteetteeteeteeeteeteeesbeeteeenseeseeeaseeseesnseenseesnseenseesnseenseesnseesees 42
4.8 G4beamline Commands DY TYPEccccuieruiiiiiiiiieiiieiieeie ettt ettt saee e eaes 42
5 G4beamline Commands (AlPhabetical)cccueiiiiiiiiiiiiiie ettt e 46

1/10/14 TIR G4beamline User’s Guide 2

O o5 €111 o) (<O PP SUSRRPRRRPR 101

6.1 Examplel — Simple Tracking and Virtualdetectors...........ceoeeierierierieniniiiieniecescee e 102
6.2 ExampleN02.g4bl — The Geant4 EXampleNO2cccceeiiiiiiiiiiieiieeieetee et 102
6.3 FILALANES.ZADL....cneiiiiieieee ettt ettt et e st e et e e st e enbeessae et e e naeeenbeenneas 103
6.4 Study2C00lINEG.ZADL......ooiiiiiieiie e ettt et et e eaeeenbeenneas 103
6.5 MultipleScattering. @ADLcooiiiiiiieeii e ettt nneas 105
6.6 Tun@SteNTarget. @ADLc..oiiiiiiieeieeeee et ettt ettt e e e nneas 105
6.7 MICE _Stag@VL.gADL.....couiiiiiieeeee ettt ettt enbeesaeeenbeenneas 106
6.8 Idealized @-2.84DL.......ooiiiiee e ettt et et eenbeenneas 113
6.9 SPACECRATZE.ZADL.....ceiiiiiieieee et et ettt e aa e et e e eaeeenbeenneas 114
6.10 SaMPIEMOVIE.ZADL......ooiiiiiiie e et ettt ettt sab e et ae e b e nneas 116
0.11 IMIOVIC.IN. ittt ettt b et s a ettt e b e e bt et s bt e bt e st e e bt et e eatesaeebeensesneentes 116
6.12 triplet.sh — tune a quad triplet for point-to-point fOCUSceveeviiriiniiiiiieeceeeeee, 117
6.13 emittancematch.sh — attempt to match a quad triplet into a solenoid............ccceeceeeciierieeneennen. 118
7 Tips and TECRNIGUESccuiiiiieiieeiii ettt ettt ettt et ee et e e beesabeesaesnseeseeenseensnesnseenseeenne 119
7.1 Getting Help on Using GAbeamlineccccueevuieeiieiieniieiieeie ettt et siee e eneees 119
7.2 Reporting Bugs in GADEAMIINEc.cooiieiiiiiiiiiiecie ettt e eeees 119
7.3 Requesting New Features in GAbeamlinecccueeviieiiieiieniieiiecie et 119
7.4 Getting Help on Individual G4beamline Commandscceecveeriienieeiiienieenienie e 119
7.5 In what Directory should I WOrK?c.oooiiiiiiiiieeeee et 120
7.6 Files Common to Multiple SIMUIationsccccueeiiiiiiiiieiienie et 120
7.7 Basic Execution in a Command-Line Environment.............cccoecueevieniieiienieenieenie e 120
7.8 Basic Execution in @ GUI ENVIFONMENLcc.oviiiiiiiiiriiiiiiieeieieee et 121
7.9 Putting Shielding into @ SIMUIAtION.........ccociiiiiiiiiiie e e 122
7.10 How to Debug a STMUIAtIONc.eeiuiiiiieiiiiiieiieee ettt et ebe e 123
711 Geantd COMIMANGSc.eeviriieriiiieniieteet ettt ettt ettt et st e bt et e s bt e beeatesbeenbeestenaeenees 124
7.12 Obtaining Plots and HiStOZIamScccuieiiiiiiiiiieeiieiieeie ettt ettt et e e neees 124
7.13 Obtaining Pictures of the System and EVents..........ccccocouieiiiniiieiiiniiciieeeeece e 125
7.14 Warning and Error messages — Which Ones can be ignoredccoecceeviieiienieeiiienieeeeen. 126
7.15 Secondary Tracks and PartiCles..........ccoeriiiiiiiiiiiiieiiecie ettt 127
7.16 Finding Example Input Files using the XXX commandc..cccceevvenirniinienenieneeneeieneene. 128
7.17 Parameterizing the INput FIleccoooiiiiiiiiii e 128
7.18 Setting Fields Of MAGNEtSc.ceeciieiiiieiieiieeie ettt ettt e e essae et e e sseeenseenneas 129
7.19 Tuning Bending MaGNEtscceerieeiieiieiiieiieeieeritesee et seeeteesaeesteessteebeessaeenseesseesnseensnes 130
7.20 Setting the Phase of RF Cavities (PIIDOX)ccoviriiiiiiiiiiiieeii ettt 132
7.21 Tuning the maxGradient of RF Cavities (PillboX)ccccuveiiiniieiiiiiieieieeeeeee e, 132
7.22 Multiple Jobs in Parallel...........cccooiiiiiiiiiiiiicee e e 133
7.23 Performing a Scan of Values of Some Parameterccccoeviieviieiiiiiiieniiicieieeeeeeeee, 134
7.24 Visually Scanning Events via the Command Line...........cccceeeiieriiiiieiieniiieieieeieeeee e 134
7.25 Optimizing the Value of Some Parameter(s)........cceevveeriieiieniieriieiieeiieeie et 135
7.26 Using Two or More Reference Particlescoecvieriiiiiiiieniieieceeeeeeeeee e 136
7.27 Fitting to Plots and Histograms in HiStOROOL...........cccceviiiiiiiniiieiieieciee e 136
7.28 Interfacing to Other Programsccccoeiiiiiiiiiiiiii ettt et 137
7.29 EventID and TrackID, and Encoding Information in them...........cc.ccoeeveniiiiiiiniiniiiniiceeen, 137
7.30 Examining OUtHEer EVENLScccoiiiiiiiiiiieiii ettt ettt et e e nnees 137
7.31 Increasing the Number of Events Displayed Visuallycccccoevvieniiiiiiiniiiiiiiieciieieeeee, 139

1/10/14 TIR G4beamline User’s Guide 3

7.32 Building G4beamline, Adding Your OWn Codecccueeviieniieiiienieeiiieeieeieeeee et 139

7.33 Displaying Magnetic Field LINesc.ccceeiiiiiiiiiniiiiieiieeieee ettt e 141
7.34 Setting the Phase of RF Cavities (rfdeVICe)cccieriiriiiiieiiieiieeieeeeee et 142
7.35 Tuning the maxGradient of RF Cavities (rfdevice)........cceovueriieriiiniieiieieeiecie e 143
8 AAVANCEA TOPICS .vieuvieeiiieiieetieeite ettt ettt et e st e et estteeabeesseesabeesseeenseeseeeabeeseeenseenseesnseeseesnseesnas 145
8.1 Writing Scripts Using GADeamIineccooiiiiieiiiiiiieiie ettt e 145
8.2 Violating the Rules on Geometrical INterseCtions............cceecueeruieeiiieniieeiiieieeieeee et 146
8.3 MaAKING @ MOVIC ..cueiieiiiiiiieiieeiit ettt ettt ettt ettt et e s ateebeeeabeeseeenbeeseeenseesaeensaenseeenseenseas 146
8.4 User Code for the usertrackfilter Commandccccooviiriiiiniieiiierieee e 151
8.5 Multiple Instances of G4beamline using MPL...........ccccooiiiiiiiiiiiiicee e 152
8.6 G4beamline Helper Programs and SCIIPLScccvieriieiiieriieeieeiieeie ettt 157
8.7 Setting UP AN TEACVICE ...ccuviiiiieiiieiieeie ettt ettt et e e bt e e sbeeseeenbaesseesnseennees 159
O FILE FOTMALS ...ttt sttt et sttt s bt e bt e st sb et et e sbt et eatesbeenees 171
9.1 BLTrackFile (generated by NTuple-s, read by Deam)cccoecueeveeeiieiieniieieeieeiieeee e 171
0.2 TTACE FIL@ .ttt et sttt et b e et be et eae s 171
0.3 FORODOD.DAT ...ttt ettt et st b e et e at st e et et e besbeebeseeene e 171
0.4 BLEFICLAMAD ...eouiieiiieiieieee ettt ettt ettt et e st e et esabe st e e ateenbeesnae et e e nneeenbeenneas 172
0.5 WINAOW FIlES...cuiiiiiiiiiiiiiete ettt sttt ettt ettt sae e 175
0.6 ROOT FALES......iiieiieiieieeec ettt et sttt ettt ettt et eae s 175
10 ACKNOWIEAZMENLSeoutiiiiiieiieeiieeiie ettt ettt ettt e et et eebeesbeeesbeessaesaseesaeeenseenseesnseenseeenne 176
AppendixX 1 — READMELEXE ...coouiiiiiiiiieie ettt ettt ettt et e st e eateesabeenseennaeenseennneenne 177
Appendix 2 — README-LINUX.EXE ..o.viiiiieiieiieeiieeie ettt ettt et ste et siae bt eseaessseessaeenseenseeenseennneenne 180
Appendix 3 — README-WINAOWS.EXE......ccuiiiiiiiiieiiieiie ettt ettt siee et e seteenseesseeenseenane e 183
Appendix 4 — README-MaCOSX EXE.....ioiuiiiiieiieiiieiie ettt et ste et e sae st eseeesteessaeenseesseesnseensseenne 184
Appendix 5 — Annotated Output from Examplel.g4blcccooviiiiiiiiiiiiiie e 186
APPENndix 6 — PartiCle DScouiiiiiiiiieiieiee ettt ettt et naeebeenaeeenne 190
APPENAIX 7 — EITOT MESSAZESeeeuvieniieeiiieiieeiieeitieeiteeieesteeteesiteeseeseaeeteessaeenseesssesnseessseenseenseesnseenssennns 199
RETETEICES ...ttt ettt ettt e bbbt st e st et eaeesbeenaesae e 201

1/10/14 TIR G4beamline User’s Guide 4

1 Introduction

G4beamline is a particle tracking and simulation program based on the Geant4 toolkit [1] that is
specifically designed to easily simulate beamlines and other systems. It is flexible enough to simulate
complex beamlines like the MICE muon beam, the Neutrino Factory Study 2 SFOFO muon-cooling
channel, complex helical cooling channels, and many others. Because of its simple and straightforward
method of specifying the system to be simulated, it is also well suited for quickly answering questions
about particle interactions and tracking (e.g. “On average, how much energy does a 150 MeV proton
lose in a 1 mm Al window?”, “How large does the multiple-scattered beam grow 20 meters downstream
of the window?””). As a Cosmic Ray “muon beam” is included, the notion of “beamline” can be rather
more general than usual.

The primary advantage of using G4beamline is that its description of the simulation is commensurate
with the complexity of the system being simulated, instead of being a significantly more complicated
C++ program. Most users need not face the challenges of learning C++ programming and the details of
the Geant4 toolkit — to use G4beamline there is no need to: a) know C++, b) learn the many aspects of
the Geant4 toolkit API, c) face the non-trivial challenges of installing the Geant4 toolkit and all its
required libraries, and d) learn how to solve any problems that arise while linking a complicated and
rather large program. All of that is done during the production of the G4beamline distribution. Users
with special needs can download and install the source distribution, and learn how to build the program,
which will permit them to add their own C++ code and custom commands to G4beamline — this can be
much simpler than the direct use of Geant4 and its libraries.

The basic structure of a G4beamline simulation is to first define beamline elements (magnets, beam
pipes, windows, RF cavities, etc.), including their geometry, materials, fields, etc., and then to place
them into the world, usually along the beam direction. As bending magnets can be modeled, the “beam
direction” can change — see “Centerline Coordinates” below; it remains simple to place elements along
the nominal beam centerline. It should be noted that a G4beamline simulation is closer to specifying a
real beamline that it is to the abstractions and approximations used in most accelerator-physics codes.
All descriptions and configurations are contained in a single ASCII input file, which also provides
values for various program parameters, specification of the initial beam, etc.

The tracking of particles through the simulated system is as accurate and realistic as the Geant4 toolkit
implements. The input file selects from any of the Geant4 physics lists, and can set values for the
various Geant4 tracking-accuracy parameters. This permits users to make trade-offs between CPU time
and simulation accuracy. Similarly, G4beamline permits the specification of magnetic map parameters,
permitting a trade-off between memory usage (and the CPU time to generate the map) and simulation
accuracy.

While G4beamline can make it rather simple to specify a simulation, it cannot substitute for knowledge
and experience about the problem domain or about particle-tracking simulations in general. Like all
computer programs, G4beamline is prone to “garbage in, garbage out”, especially when used by
unskilled users. It is strongly suggested that you use visualization to verify the geometry of your
simulation and that a handful of particles are tracked properly through it. Whenever possible you should
arrange to track through a simple geometry that you can compare to independent results, to make sure
that what you think is happening actually does occur in the simulation.

1/10/14 TIR G4beamline User’s Guide 5

This document does not discuss compiling and building the G4beamline program. That is an advanced
topic complicated by the complexity of linking a Geant4 executable with several external libraries and
diverse visualization drivers. Most users will not need to do that, and can just use the distribution as is.
The README-*.txt and BUILD.txt files in the distribution and the appendices provide considerable
detail about how to build the program.

G4beamline release 2.16 uses Geant4 release 9.6 patch02.

1.1 Quick Start Guide

This section gives a quick overview of how to install and run G4beamline. It cannot discuss all the
subtleties involved in performing simulations. New users should note in particular section 3 on
important values that affect the accuracy, and section 7 on tips and techniques.

1.1.1 Installation

NOTE: The G4beamline distributions no longer include the HistoRoot program. It is available at
http://historoot.muonsinc.com.

G4beamline requires the Geant4 data needed by the physics list used in the simulation. These data are
placed into a directory named Geant4Data that is normally located in the user’s HOME directory. The
first time you run G4beamline, a Java program is run to assist you in downloading these data. If you did
not download all data initially, and find you need other components later, you can access the download
assistant from the Help page of the GUI or by running “g4bldata —install”.

1.1.1.1 Windows

Prerequisites:
¢ Java SE Runtime Environment 1.5 or later (http://java.sun.com) — if you have the JDK installed
that includes the runtime environment.
e Root 1.24 or later (http://root.cern.ch).
Root is not required if you will use only ASCII output files (though you will probably find the HistoRoot
program useful to generate plots of Root and ASCII files, and it requires a specific version of Root).

The distribution file is G4beamline-VERSION.msi, available from http://e4beamline.muonsinc.com.
Simply download it and execute it with administrator privileges. By default, it will install files into
“C:\Program Files\MuonsInc\G4beamline”, and place icons onto your Desktop and into the Start menu.
It will also place a copy of the G4beamlineExamples and the G4beamlineDocumentation into “My
Documents\G4beamline Examples”. Delete the downloaded file after installing it.

To use the command-line programs, you must a) install the Cygwin environment, b) use its bash shell,

and c¢) add the G4beamline programs into your PATH:
source “C:/Program Files/MuonsInc/G4beamline/bin/gd4bl-setup.sh”

You may put this into your SHOME/.bash_profile. There is a similar g4bl-setup.csh.

1/10/14 TIR G4beamline User’s Guide 6

The first time you run G4beamline, it will launch a helper program (G4blData) to download the required
Geant4 data files.

1.1.1.2 Linux (Intel)

Prerequisites:
¢ Java SE Runtime Environment 1.5 or later (http://java.sun.com) — if you have the JDK installed
that includes the runtime environment.
e Root 1.24 or later (http://root.cern.ch).
Root is not required if you will use only ASCII output files (though you probably will find the HistoRoot
program useful to generate plots of Root and ASCII files, and it requires a specific version of Root).

The distribution file is G4beamline-VERSION-Linux.tgz, available from
http://gdbeamline.muonsinc.com. Simply download it and un-tar it in your SHOME:

tar —-xzf gd4beamline-VERSION-Linux.tgz
Delete the downloaded file after doing this.

This will construct an icon on your Desktop to run G4beamline:
gd4beamline-VERSION-Linux/bin/gd4bl-icon

You can copy this icon into any menus of your desktop manager.

To use the command-line programs, you must add the G4beamline programs into your PATH:
source gd4beamline-VERSION-Linux/bin/g4bl-setup.sh

You may put this into your SHOME/.bash_profile. There is a similar g4bl-setup.csh.

The first time you run G4beamline, it will launch a helper program (G4blData) to download the required
Geant4 data files.

1.1.1.3 Mac OS X (Intel)

Prerequisites:
¢ Java SE Runtime Environment 1.5 or later (http://java.sun.com) — if you have the JDK installed
that includes the runtime environment. Java is normally installed on Mac OS X.
e Root 1.24 or later (http://root.cern.ch).
Root is not required if you will use only ASCII output files (though you probably will find the HistoRoot
program useful to generate plots of Root and ASCII files, and it requires a specific version of Root).

The distribution file is G4beamline-VERSION.dmg, available from http://g4beamline.muonsinc.com.
Simply download it, open it, and drag the G4beamline icon to your /Applications folder. Drag the
G4beamlineDocumentation and G4beamlineExamples folders to your desktop, if desired. Then eject the
installer disk image and move the downloaded file to the trash. As usual, you can then drag the
application icon from /Applications to the Dock.

1/10/14 TIR G4beamline User’s Guide 7

If you want to use the command-line programs, you must add the G4beamline programs into your

PATH:
source /Applications/G4beamline.app/Contents/Resources/bin/gd4bl-setup.sh

You may put this into your SHOME/.bash_profile. There is a similar g4bl-setup.csh.

The first time you run G4beamline, it will launch a helper program (G4blData) to download the required
Geant4 data files.

1.1.2 Initial Test

After installing G4beamline, the first thing to do is to try it on some of the example files. You can
double-click the G4beamline icon; on Windows/Cygwin, Linux, or Mac you can also execute the
command g4blgui. This should bring up the G4beamline GUI window (if it doesn’t, there is a problem
with either your Java installation or your PATH). Once the GUI opens, click on the Browse button and
navigate to the G4beamlineExamples directory and select Examplel.g4bl (on Windows, go to “My
Documents\G4beamlineExamples”). Clicking on the Run button should execute the Examplel
simulation (takes just a few seconds to simulate 1000 events). Try selecting the best viewer, select (say)
10 events/run, and click Run again to see the Openlnventor display of the system and a handful of
events; use the mouse to rotate and zoom the display.

If you have tcl and the bash shell available (Linux, Mac, Windows/Cygwin), you can run the full test
suite of G4beamline. Simply cd to the install-directory/test and issue the command ./a/l. Individual tests
can be run singly, if desired. At present, it takes about 10 minutes to run all 97 tests on a reasonably
modern computer.

1.1.3 Using the G4beamline Command Line

On Linux and Mac OS X, the command line is the traditional way to run programs. On Windows this is
possible, but you must install the Cygwin environment first (http://www.cygwin.com) and use its bash
shell rather than the Windows cmd. You can execute the G4beamline GUI in all environments via the
command g4blgui executed from the install directory via an absolute path.

The bare g4beamline command specifies the input file, plus whatever additional parameters are needed
(see the param command). It is rarely used by users (see scripts below). Its syntax is:

g4beamline input.file namel=valuel namelZ=valuel

Here input.file is the filename of the file describing the simulation (‘-* means stdin), and namel and
name?2 are parameters to be passed to the program or to input.file. Note that users will rarely (if ever)
execute this command directly — most users will use the g4b/ script instead of g4beamline itself; its
arguments are the same:

g4bl input.file namel=valuel namel=valuel
The g4b! script will ensure that the necessary libraries from the binary distribution will be found and

used, and sets G4BL_DIR for finding viewer.def and the physics data files. Note that the g4b/ script
relies on being executed via an absolute pathname, so the distribution bin directory should be put into

1/10/14 TIR G4beamline User’s Guide 8

your PATH (or you can manually type the full path to g4b/). The gdbeamline program has no such
expectation, but to run it you need to have all the necessary libraries and physics data-sets available in
your environment, which happens when a) you setup to build G4beamline, b) you run the g4b/ script, ¢)
you run the g4blgui script, or d) you double-click the G4beamline icon.

In addition, the g4b/ command arguments can contain commands to be interpreted before reading the
input.file. These are interpreted in the order given, after all the parameters on the command-line are
defined. If the command has arguments, it must be quoted because of the spaces between arguments.
The usual commands this is used for are eventcuts (used by g4blgui) and movie (used by users to add the
movie NTuples to an existing simulation):

g4bl input.file movie namel=valuel namelZ=valuel

For visualization, the viewer.def file is looked for in the current directory and then in the directory from
G4BL_DIR in your environment. If you aren’t using the g4b!/ script, you probably want to set
G4BL_DIR to the distribution directory, so you don’t need to link viewer.def into every working
directory (G4BL _DIR is set when you setup to build G4beamline, and also by g4bl, g4blgui, and the
icon).

G4beamline has two modes of operation: visualization and tracking. If the parameter viewer has been set
to anything other than none, it will run in visualization mode, which displays an image of the simulated
system (as specified in the viewer.def file for the viewer specified). For viewer=none (the default),
G4beamline will run in tracking mode. In visualization mode any NTuples defined in the input.file will
not be written to files. The simplest and most common way to invoke visualization mode is to put an
argument viewer=best onto the command line, or select a viewer in the GUI. See section 2.8 for a list of
the supported visualization drivers.

A very useful trick is to run G4beamline interactively, just to issue help and list commands:
g4bl -
cmd: help
cmd: help beam
cmd: list materials
You may find it useful to keep this open in one window while you edit your input.file in another
window.

Another useful trick is to add “steppingVerbose=1" to the command line. This will print one line per
physics step, so you can see precisely what happens during the simulation. This is very verbose, so you
want to limit the number of events to some small number (or type *C to stop it). The prints are about
120 characters wide by default, so it’s best to do this in a wide window. You can change the information
printed, see section 3.2.1.

A large number of useful tips and techniques are described in section 7.

1.1.4 The HistoRoot Program

NOTE: The G4beamline distributions no longer include HistoRoot. It is available at
http://historoot.muonsinc.com.

1/10/14 TIR G4beamline User’s Guide 9

HistoRoot is a program to generate Root plots and histograms from Root and ASCII files containing
NTuples. While everything HistoRoot does can be done via Root commands and code, the HistoRoot
program makes it unnecessary to know Root and C++, and guides you through most common tasks.
HistoRoot can read multiple Root files (7File), and can generate plots from the 7Ntuple—s in them. It can
also read ASCII files (in either .csv or column format) and convert them to TNtuple-s for plotting (see
the Help for details on the ASCII file format; a structured comment can associate names to the columns).

HistoRoot was inspired by the HistoScope program [3], though its user interface is completely different.
Having a simple GUI to generate plots and histograms is quite useful, and having sliders that
interactively impose cuts on the histogram is a great convenience.

1.2 License and Distribution

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

http://www.gnu.org/copyleft/gpl.html

This application includes software developed by others; see the Acknowledgements in section 10 below.

1/10/14 TIR G4beamline User’s Guide 10

2 Basic Concepts

Any physical component of the simulation is called a beamline element, or just an element. Every
element inherently has a geometrical shape and a material; some elements also have electromagnetic
fields associated with them. Some elements are quite simple, merely defining a box or tube made of
some material; other are quite complex, defining in detail the construction and electromagnetic fields of
a complicated object such as an RF cavity.

Elements can often be nested inside each other; any element can be placed inside another element, but
not all elements can act as the parent of others (in general, simple elements can be parents, complex ones
cannot; most elements that generate an electromagnetic field cannot be parents). The notes and help for
each element describe whether or not it can be the parent to other elements. This is the natural way
Geant4 builds the geometry hierarchically: a “daughter” volume is said to be placed into its “mother” or
“parent” volume (every element is also a volume, perhaps several volumes). The “World” volume is the
ancestor of all volumes, and in G4beamline the World volume automatically grows to hold everything
that is placed into it. In G4beamline, individual elements have their own material(s), and when a
daughter is placed inside a parent, the daughter’s material applies inside the daughter, and the parent’s
material applies inside the parent outside any daughters; many elements use their parent’s material by
default.

G4beamline attempts to model the simulated world in as simple and straightforward manner as possible,
so in most cases a single object you might place into a real beamline will be represented as a single
beamline element in the program. So, for example, a generichend element represents a (generic) bending
magnet and its field; the generichend command defines an individual magnet type, including all details
of both its geometry and field; each placement of the magnet puts the geometrical object into the
simulation and also generates the magnetic field appropriate to the magnet. Other elements behave
similarly.

In the Geant4 toolkit, only simple geometrical shapes are available, and complicated objects must be
built up from cylinders, boxes, etc. In G4beamline there is a rather large list of pre-defined elements that
are much more complicated, such as an entire RF cavity (including time-dependent E- and B-fields,
optional windows, etc.), or a complete absorber assembly (modeled after the absorbers of the MICE
experiment, suitable for neutrino factory cooling channel simulations). G4beamline includes simple
pipes, cylinders, spheres, boxes, extruded polygons, and polycones, so you can build up complicated
objects from them; in general, it is both easier and better to use the pre-defined elements whenever they
are suitable for your needs. In cases where the pre-defined elements are not sufficient, it is possible to
add additional elements to the program (this requires C++ programming and the installation of the
complete G4beamline build environment — see BUILD.txt in the distribution and the doxygen
documentation of the classes).

2.1 Particle tracking in simulations
The accuracy of a simulation of tracking particles through a system depends primarily on how realistic
the simulation is. This has many aspects:

* How closely the geometry of the simulation matches the real geometry

* How accurately the real electromagnetic fields are modeled in the simulation

1/10/14 TIR G4beamline User’s Guide 11

* How accurately the material properties of the real objects are modeled in the simulation

* How well the modeled beam distributions match the real beam

* How accurately the program tracks particles

* How accurately the implementations of physical processes match the real world

* FEtc.
While G4beamline provides facilities for the user to specify most of these, and gives them reasonable
default values, it is really the user’s responsibility to ensure that the results of a simulation are accurate
enough to be useful.

In G4beamline, Geant4 particle tracking is used directly with the tracking-accuracy parameters of
Geant4 settable by the user (see section 3.2.2).

2.2 Units

In G4beamline, all physical sizes and dimensions are specified in millimeters, just as in Geant4. Most
other units are as in Geant4, except rotation angles are in degrees and EM fields are in Tesla and
MegaVolts/meter. The units of all arguments to all commands are given in section 5 of this document
and in the output from “help commandname”.

2.3 Geometry

As in Geant4, geometry in G4beamline is specified at the element level and in the placement of
elements. Each element has an inherent shape and size, which are usually parameterized, that determine
the basic geometry of the element in isolation. Elements can be placed into the simulated World, or into
other elements placed into the world, with specified geometrical relationships consisting of both
rotations and offsets relative to the parent’s coordinates. This will become obvious when you look at the
various element definition commands (e.g. the box and fubs’ commands), and the place command.

Because of the way Geant4 does tracking, there are restrictions on the geometrical intersections of
elements:

* Every daughter element must be wholly contained in its parent

* No sibling elements can intersect each other in any way
This results in a strict hierarchical arrangement of element volumes, with the World volume as the root
and outermost volume from which all other volumes are descended. The World volume, and the group
element, will automatically expand to the size required to hold all daughter elements placed into them.

G4beamline has a geometry test that will verify these requirements for points distributed on the surfaces
of every element. Due to round off in tracking, the geometrical intersections have a default accuracy of
10 microns; the geometry test has a default tolerance of 2 microns; in practice these are usually
reasonable values, but they can be changed when required by simulations at a different scale.

Note that the Geant4 toolkit has “logical volumes”, “physical volumes” and “placements”. In
G4beamline, these are not visible to the user; elements are modeled as single objects, and you simply
place the objects where they belong, keeping in mind the above requirements on intersections. The C++

" “Tubs” is the name Geant4 uses for a tube or a cylinder (a tube with innerRadius=0).

1/10/14 TIR G4beamline User’s Guide 12

code implementing each element deals with the Geant4 details, of course. Unlike Geant4, in G4beamline
an element that generates an electromagnetic field is a single object that includes both its geometrical
volume(s) and its field.

An additional limitation of the geometry in G4beamline is the requirement that any element that is to be
the parent of other elements be placed after the children are placed into it. Once a given element has
been placed (anywhere), it can no longer be used as the parent of other elements.

2.4 Coordinates

There are four types of coordinates used in G4beamline:
1. Global coordinates
2. Local coordinates
3. Centerline coordinates
4. Reference coordinates

All coordinate systems are Cartesian, with axes labeled X,Y,Z,T. For geometrical placement, T is
irrelevant (but it is needed during tracking). X,Y,Z are always right handed, usually with the +Z
direction in the nominal direction of the beam, X is normally beam left, and Y is normally up.

2.4.1 Global Coordinates

Global coordinates are merely the local coordinates of the World volume — the outermost physical
volume of the simulation, which defines the entire world known to the program. All beamline elements
and physical objects of the simulation are contained within the world volume. Note that the World
volume automatically expands to hold any elements placed into it, so the user need not be concerned
with how large it is. Any particle that reaches an edge of the World volume is killed right there.

Tracking is performed using global coordinates, and electromagnetic fields are always determined using
global coordinates (but they are specified using the local coordinates of their element; each placement of
an element into the simulation includes the local < global coordinate transformations needed).

2.4.2 Local Coordinates

There is a set of local coordinates for each and every element. If the element has an associated field, the
field of the element is specified in local coordinates, and the program automatically keeps track of the
global < local coordinate transforms required for each placement of the element (including rotations for
vector fields).

Whenever an element is placed inside a parent element (e.g. a group or a box), the parent’s local
coordinates are used in the place command, except for the world volume. When placing an element into
the World volume you can specify either Centerline coordinates (the default) or global coordinates (the
local coordinates of the parent, here the World volume).

2.4.3 Centerline Coordinates

Centerline coordinates are intended to represent the nominal centerline of a beamline, with the Z axis
running down the center of the beamline, the X axis is beam left, and the Y axis is up. This includes
corners generated by bending magnets. The centerline coordinates are initially identical to the global

1/10/14 TIR G4beamline User’s Guide 13

coordinates, but the start, corner, and cornerarc commands will change that (each bending magnet is
normally immediately followed by a matching corner or cornerarc command). By default, elements
placed into the World volume use centerline coordinates to specify the placement, but global coordinates
can be used if desired. Centerline coordinates apply only to the World volume. They are piecewise-
linear, and inside bending magnets they will differ from the theoretical reference-orbit coordinates
commonly used in accelerator physics; the cornerarc command will approximate reference-orbit
coordinates by using three corners chosen to have the same length along Z as the reference-orbit
coordinates have along the arc. Note that the corner and cornerarc commands cannot have an angle
greater than 90°; if necessary, this limit can be worked around by using two cornerarc-s in a row with
half the desired angle.

In X and Z, centerline coordinates correspond to what a surveyor might draw on the floor — a piecewise-
linear centerline along which the various beamline elements will be placed. Note that just like a real
beamline, in G4beamline the fields of bending magnets must be adjusted (“tuned”) so that the desired
reference particle will travel along the centerline of the beamline. In general, the fringe fields of bending
magnets will require them to be offset slightly from their nominal position relative to a corner of the
centerline. See section 7.18 for a description of how to place and tune bending magnets.

If your input.file has no start, corner, or cornerarc commands, then the centerline coordinates will be
the same as the global coordinates, everywhere.

Note that in the input file, each start, corner, or cornerarc command affects the centerline coordinates
immediately. This means that all elements to be placed between a given pair of corners must be put into
the input file between those corner commands. If you attempt to place an object using a Z position in
front of a previous corner or cornerarc, or behind a following one, it will almost surely not do what you
intend. Because of this, it is quite difficult to place any element inside a bending magnet using centerline
or global coordinates; the best way to do that is to use the generichend object as the parent for the
placement.

Because centerline coordinates can only apply when placing elements into the World volume, bending
magnets must normally be placed into the World volume, not into a group or other parent volume.

NOTE: the transform from global to centerline coordinates must be performed at the start of tracking
each particle. This transform can be ambiguous in certain regions near corners — see the figure at left (in
' which the heavy black line is the centerline with 2 corners and 3
segments): the blue and green ambiguities are minor, because they
involve adjacent regions, but the red one is serious because it involves
non-adjacent segments; a ring can be much worse. The yellow regions
; appear to belong to no segment, and are simply assigned to the next
i ' downstream segment. The tracking of particles handles the change of
ol \J centerline segments naturally, moving from segment to segment in
Rl o order, but any jump or start must deal with the ambiguities (e.g. the
. initial point of beam particles or secondaries). The solution is to
’ specity a radiusCut for every start, corner, and cornerarc command
‘ (this is a limit on a particle’s radial distance from the centerline,
indicated by the dashed lines in the figure). This removes the serious

1/10/14 TIR G4beamline User’s Guide 14

ambiguities, and the remaining minor ones are resolved by using the earliest region of the centerline for
which the global coordinate point is inside the radiusCut. Most beamlines have apertures that can be
used to determine an appropriate radiusCut in each segment of the centerline. If no radiusCut is
specified the ambiguities can become so bad that they prevent the use of centerline coordinates,
especially if there are many corners, large angles, or if the fune command is used (which “jumps” the
tune particle); simulating a ring may not work at all without a radiusCut (and needs the ring argument to
the start command, which assists in resolving the ambiguities unique to a ring).

2.4.4 Reference Coordinates

Reference coordinates are the usual coordinates used by accelerator physicists, with the Z axis along the
reference orbit, X to the beam left, and Y up. In G4beamline, the actual track of the reference particle is
used for the Z axis. As the reference track is stepwise linear between the physics steps of the tracking, it
is usually necessary to specify a rather small maxStep (often 10 mm is about right). Note these
coordinates can be used only for output; objects cannot be placed using them, and tracking always uses
global coordinates.

As an example, consider a system having a uniform By = 8 T with vacuum everywhere, and a Gaussian
beam injected with Py = 0 centered on the +Z axis; there is a particlefilter to limit the number of turns
each particle can take. Each particle (including the reference particle) traces 6’ circles that lay right on
top of each other. When using global coordinates for the trace, the circles are quite evident; using
reference coordinates, the tracks are sinusoids (see figures below).

Global Coordinates view — Z vs. X

Each track
makes 6 1/2
circles that lay
right on top of
each other.

X=0,Z=0.
Beam
generated

~ straight up.

100 events.

1/10/14 TIR G4beamline User’s Guide 15

Reference Coordinates view — Z vs. X

] 1 L | L] T
_ "allTracks 1xt” using 3:1

30

20 | [-

>

A
Q
A

«(pr>>

K

<D=

e (p>>=
>

e (Pp>>=
<)==

e ((p>>=
(>

L@
< (=

T (P>

A

A.
A
\
\7

Y

<

20F | “ | 4

.
{
=
s
s
s
s
s
s

0 S00 1000 1500 2000 2500 3000 3500

2.5 Rotations

In G4beamline, all rotations are specified relative to the fixed coordinate axes of the parent volume into
which a given element is being placed. This is the natural way to think of placing an object into a room,
where the object is the element being placed, and the room is the parent volume into which it is placed.

Rotations can be specified in the place command, and in a few other commands. They are specified by a
rotation parameter, the value of which is a comma-separated list of rotations around the parent’s
coordinate axes, which are applied in order (left-to-right) to the object; values are in degrees. So
“rotation=Y 90,X30” means:

1. Start with the object’s local coordinate axes aligned with the parent’s coordinate axes

2. Rotate the object (and its local coordinate axes) by 90 degrees around the parent’s Y axis

3. Then rotate the object (and its local coordinate axes) by 30 degrees around the parent’s X axis.
Negative and decimal values of the angle are permitted. The direction of a positive rotation is given by
the right-hand rule: use your right hand to grasp the rotation axis with your thumb in its positive
direction; a positive rotation goes in the direction of your fingers.

1/10/14 TIR G4beamline User’s Guide 16

If both a rotation and an offset are specified when placing an element, the rotation occurs first, then the
offset. This makes sense, as the location of the center of the object is specified when placing objects.

When the parent is placed with a rotation and/or an offset, the relationship between daughter and parent
remains unchanged, so the effect on the daughter is cumulative, all the way back to the World volume.

When used in a corner or cornerarc command, the rotation is relative to the previous centerline
coordinates. When placing into the World volume using centerline coordinates, the rotation is relative to
the current centerline coordinates (as is natural). So, for example, one can simply place genericquad
elements using centerline coordinates without rotation or offset and the nominal beam centerline will go
right down their center.

Note: this is quite different from the way the Geant4 toolkit itself specifies rotations and placements.

2.6 Materials

Every physical object inherently is constructed out of some material. G4beamline uses the Geant4
methods of specifying materials. The Geant4 version of the NIST database is available, and is used to
define any material that is not already defined (as long as it is known to the database). This database
includes all elements with Z<=98 plus a rather large list of other materials, including most of the ones
commonly used in simulations. See “help material” for details (or the material command in section 4
below). Additional materials can be defined as needed, via the material command, but that is needed
only for unusual materials or gases with nonstandard density. The Geant4 NIST database prepends
“G4_” to all material names, but in G4beamline that prefix is optional (G4 Al and Al are the same
material, aluminum from the NIST database).

Every element command has a material argument (or similar) to set the material for the physical object
(some elements have more than one kind of material parameter). In many cases, the default is that of the
parent volume, but refer to the individual command descriptions for the actual default values. The
material of the World volume is determined by the parameter worldMaterial, which defaults to Vacuum.

Materials defined by the material command can be used to filter particle tracks. That is, the user can
specify which types of particles will be killed whenever they enter any object made of this material. The
arguments relevant to this are keep, kill, and require; keep and kill are lists of particle names, but require
is an expression in terms of track variables, so quite complex filters can be constructed. For example, in
a simulation of a neutrino source, it may be desirable to kill every non-neutrino track that hits a magnet
or beam pipe, but let the neutrinos through to a detector far away. By defining the material “Iron” as
below, and then using it as the ironMaterial of all magnets and the material of all beam pipes, only the
neutrinos can escape. This way you can have a very large world, including a distant neutrino detector,
and not waste time simulating uninteresting interactions in magnets or beam pipes, or tracking
uninteresting particles over long distances.

material Iron Fe,1.0 keep=nu mu,anti nu mu,nu e,anti nu e

1/10/14 TIR G4beamline User’s Guide 17

2.7 Electromagnetic Fields

In the real world, electromagnetic fields are generated by real structures. This is also true in
G4beamline, where various elements include their electromagnetic fields. So a genericbend object
includes not only the geometric shape of its iron and coils, it also includes its magnetic field. Placing a
genericbend element into the world places both its iron and its field; any rotations or offsets used in the
place command apply to both the iron and the field.

As G4beamline is intended to model beamlines, in many cases the field of an element is only valid
inside its aperture (plus perhaps a short distance away for a fringe field). This is so for genericbend and
genericquad, but solenoid and fieldmap have fields throughout space (which are truncated according to
the tolerance specified or the limits of the map).

In Geant4 programs, computing the field is usually the dominant CPU time used during tracking. In
order to minimize this CPU usage, G4beamline optimizes the computation of the field by using a global
bounding box around the field of each element. The World volume is divided into rectangular voxels,
and during initialization each voxel is given a list of all fields whose bounding boxes intersect the voxel.
The voxel size is given by the parameter fieldVoxels, which defaults to “200,200,200” (200 mm on each
side). To compute the field at a given point, the program computes the voxel containing the point, and
then sums the fields from the voxel’s list.

Note: this is quite different from Geant4, where geometry and fields are strictly separate, and voxels are
not used in the field computation.

2.8 Visualization

The ability to easily visualize the system being simulated is an important part of G4beamline. Without
visually examining the system in detail, it is easy to make simple mistakes that completely invalidate the
results of the simulation. Users are strongly urged to use visualization frequently.

In order to be visible, a given beamline element must be given a color. Every element accepts an
argument “color=1,1,1”, where the 3 floating-point values are for Red,Green,Blue respectively, and
must be between 0.0 and 1.0 (inclusive). “color=invisible” or “color=""""1s invisible, “color=1,1,1" is
white, “color=0,0,0” is black, “color=0,1,1” is yellow, “color=0.6,0.6,0.6 is gray, etc. Most elements
have a default color of 7,7,/ (white). An optional fourth value, alpha, can be given; it must be between
0.0 and 1.0 (inclusive), and represents the transparency of the element (O=transparent, 1=opaque).
Transparency can be very useful, as it permits you to see tracks inside objects; a wireframe view will
also permit that, but has many extraneous lines that confuse the eye.

By default, particle tracks are visible: red for negatives, blue for positives, and green for neutrals. See
the particlecolor command to change this. If you run pions or muons you may be surprised to see all the
neutrinos from their decays; see the trackcuts command to avoid tracking them. You may also be
surprised by delta-rays, which are really low-energy electrons (e); trackcuts can eliminate them, too.
For example, when studying n'—p'—e" decays, the following commands are useful to color them
differently and to eliminate the neutrinos and other extraneous particles (e.g. delta rays):

particlecolor pi+=1,0,0 mu+=0,1,0 e+=0,0,1

trackcuts keep=pi+,mu+, e+

1/10/14 TIR G4beamline User’s Guide 18

Once your beamline elements have been given colors (in your input file), and so have your particles, to

actually visualize the simulation you need to select a visualization driver. G4beamline supports the
following visualization drivers from Geant4:

Descriptive Name Name Type Description

- best Interactive | Alias for the best viewer available,
currently OIX/OIWin32.

Openlnventor OIX Interactive | Renders in 3d using either solid shading
with transparency or wireframe mode (+
others), and permits the easy rotation,
scaling, and movement of the image using
the mouse.

Openlnventor OIWin32 Interactive | The name of Openlnventor on Windows.

OpenGLImmediateX | OGLIX Interactive | Basic OpenGL 3-D viewer.

OpenGLStoredX OGLSX Interactive | Basic OpenGL 3-D viewer.

OpenGLImmediateXm | OGLIXm Interactive | Like OGLIX, except has Motif widgets to
permit the easy rotation, scaling, and
movement of the image. If you cannot get
Openlnventor to work, try this one next.

OpenGLStoredXm OGLSXm Interactive | Like OGLSX, except has Motif widgets to
permit the easy rotation, scaling, and
movement of the image.

ASClIITree ATree Offline A simple hierarchical description written to
stdout.

DawnFile DAWNFILE | Offline Use the DAWN viewer.

GAGTree GAGtree Offline Another geometry description written to
stdout.

HepRepFile HepRepFile | Offline Use the WIRED viewer (Java).

HepRepFile HepRepXML | Offline Use the WIRED viewer (Java).

Wired Wired Offline Synonym for HepRepFile.

Wired3 Wired3 Offline Synonym for HepRepFile.

RayTracer RayTracer Offline Generates JPEG files; use any image
viewer for them.

VRMLIFILE VRMLIFILE | Offline Use a VRML viewer.

VRML2FILE VRML2FILE | Offline Use a VRML viewer.

Interactive viewers display the simulated system and events while G4beamline is running;
Offline viewers write the image to a file for viewing using another program.

The parameter that controls visualization is called viewer, and to use a given visualization driver, simply
add viewer=best to your command line (or name whichever driver you want from the list above). This

puts G4beamline into a mode to perform tracking and visualization rather than just tracking beam
through the simulated system.

Visualization requires the file viewer.def, which contains help text and the internal Geant4 commands
required to invoke the selected viewer (it is a simple ASCII file with format documented in its
comments). viewer.def s searched for in the current directory and then in the directory named in

1/10/14 TIR

G4beamline User’s Guide

$G4BL_DIR (which points to the G4beamline distribution directory); the file is
$G4BL_DIR/share/gdbeamline/viewer.def.

The G4beamline visualizations display all events of a run in a single image; some viewers consider each
image to be an “event”, but for beamlines multiple events in an image are often useful. Once the viewer
has been selected, if you are running gdbeamline manually you need to start a run by waiting for the
“idle>” prompt and then typing “/run/beamOn 23” (or however many events you want to display). When
G4beamline presents you with an “idle>” prompt, this is the Geant4 internal command processor.
Viewer.def uses these commands to setup and invoke the selected visualization driver, and to arrange for
tracks to appear in the images. See the Geant4 User’s Guide [1] for details about these commands.
Typing either “exit” or *C (Ctrl-C) will terminate the program. The “idle>" prompt appears after the
commands in viewer.def have been executed and the visualization viewer is set up. If you are finished,
simply exit the program (*C), or issue “/run/beamOn 23 to run the next 23 events and visualize them
(i.e. generate another image containing those events). The Offline drivers are smart enough to generate a
new image file for every beamOn command (filenames vary for each driver). The g4b/gui graphical user
interface program automatically handles all this.

If your input.file has no beam or reference commands, you can visualize the system without any events
simply by setting viewer=best (or other viewer) on the command line.

2.8.1 Additional Visualization Techniques

These techniques use the Geant4 user interface, via the g4ui command. You may want to look at the
Geant4 help for these commands; to do so, go to the examples directory and type (any input file will do):

g4bl Examplel.gd4bl viewer=best

Once the viewer opens its window, you will get an /d/e> prompt to which you can reply he/lp<CR> and
obtain help on any Geant4 Ul command.

Note there are lots of options for the Geant4 viewers, and this is only a short list of those that users have
requested in the past. If there is some aspect of drawing that you want, chances are fairly good that it is
available.

2.8.1.1 Different Drawing Scales

Many beamlines are much longer than they are wide or tall. This makes the transverse dimensions
difficult to see in a viewer, and when magnification is increased to see them, only a very small portion
of the beamline is visible at a time. This can be addressed by using different drawing scales for x, y, and
z. The command to scale x by 2, y by 3, and z by 4 is:

gd4ui when=4 “/vis/viewer/scaleTo 2 3 4”
Or type /vis/viewer/scaleTo 2 3 4 to the idle> prompt.

2.8.1.2 Changing the Background Color

To set the background color to white, use this command:

1/10/14 TIR G4beamline User’s Guide 20

gd4ui when=4 “/vis/viewer/set/background 1 1 1”

The 3 values are for red, green, and blue, and should each be a value between 0 and 1; black is “0 0 0”
(the default). A fourth value for opacity can be given.

2.8.1.3 Drawing Axes

Drawing the coordinate axes can make it easier to find your way around the image of the system in a
viewer. You can draw a set of axes at any desired location with any desired length. To draw coordinate
axes of 100 mm length at x=1 y=2 z=3 (mm):

g4ui when=4 “/vis/scene/add/axes 1 2 3 100 mm”

2.8.1.4 Cut-Away and Section Planes

The Geant4 drawing interface includes cut-away and section planes. The interface is quirky and you’ll
have to search the Geant4 documentation and just play with it. Not all viewers support this. The
commands are: /vis/viewer/set/sectionPlane and /vis/viewer/addCutawayPlane.

2.8.1.5 Starting up in Wireframe Mode

gd4ui when=4 “/vis/viewer/set/style wireframe”

2.8.1.6 Filters

The Geant4 drawing interface includes filters that permit you to only draw certain particle types, or only
particles that were created in a specified physical volume, or The interface is quirky, and you’ll have
to search the Geant4 documentation and just play with it.

2.8.2 The Openinventor Visualization Driver

Because the Openlnventor driver (OIX/OIWin32) is so much more useful than the other drivers, it is the
driver of choice (linked to the name “best”). This driver will permit you do to almost everything that any
other driver can do, the exception being the Wired driver lets you modify the graphical attributes of
individual objects by picking and editing (that is in the works for Openlnventor).

Like other X-windows programs, the Openlnventor driver of G4beamline can operate in either local or
remote (networked) mode. The X display server (usually your desktop or laptop) must have the 3-D
display capabilities of OpenGL installed, as must the X client (where G4beamline is running). When
you startup the Openlnventor viewer, the window looks like this (MICE_StageVI1.g4bl):

1/10/14 TIR G4beamline User’s Guide 21

b 4 viewer-0 (OpeninventorXt) 7

File Etc Help

Rotx Roty JIIIIFIFCIII| Dolly

The Rotx and Roty wheels rotate the image relative to the viewer, and the Dolly wheel moves in and out
with a corresponding change of scale. The buttons along the right edge do the following:

Arrow Select pick mode and cursor
Hand Select move mode and cursor (default)
? Help (not implemented)
House Restore display to Home position
House with arrow Set Home position to be the current display
Eye Zoom so everything is visible
Gunsight Not implemented
Perspective box outline Select isometric or projected display

When the Hand cursor is active the mouse behaves like this:

Left Button Click and drag to rotate the display. It acts as if there were an invisible sphere
surrounding the image, and the mouse movements rotate that sphere in any
direction. This is quite different from the Rotx and Roty wheels, and takes some
getting used to.

Middle Button Click and drag to pan the display — this moves the visible objects around without
rotation.

Right Button ~ Brings up a menu with various functions, Draw Styles, and other items. The most
useful is DrawStyles/StillDrawStyle/Wireframe, which will draw in the wireframe
mode rather than as solid surfaces. This permits you to look inside objects, and is
considerably faster drawing.

The Etc menu has several useful items:

Set Solid Set the G4 mode to Solid (default)
Set (G4) reduced wire frame Set the G4 mode to wireframe,
real edges only
Set (G4) full wire frame Set the G4 mode to wireframe,

1/10/14 TIR G4beamline User’s Guide 22

including triangles to fill surfaces
Visible mothers + invisible daughters | Daughter volumes are invisible
(default)

Visible mothers + visible daughters Make all objects visible

The key to understanding how objects are displayed is to know that Geant4 has a solid/wireframe
choice, and Openlnventor has a solid/wireframe choice, and they are different:

G4 mode OI mode Description
(Etc menu) | (Right click menu)
Solid Solid (“as is” Draw solid surfaces
Solid Wireframe Draw wireframes with triangles filling visible surfaces
Reduced Either Draw reduced wireframes, showing only real edges
Wireframe
Full Either Draw wireframes with triangles filling visible surfaces
Wireframe

For instance, in G4 reduced wireframe mode a sphere is invisible, as it has no real edges; in G4 full
wireframe mode it has triangles filling its visible surface (in such a way you can tell it is a sphere). In
reduced wireframe mode, a cylinder is drawn as two circles.

Note that by default all daughter volumes are visible. You can change that in the Etc. menu.

The Openlnventor driver has many more features, but this should get you started. It will also do
animation: with the hand cursor left click and drag the image, letting go of the button while moving —
the image will continue to rotate until you left click on it (works best locally).

2.8.3 A Trick for Visually Scanning Events

The simplest way to scan events visually is to use the g4blgui program, but it can be done manually via
the command line. The Openlnventor driver (OIX) has the ability to exit the viewer and return to the
Geant4 command input. This can be used to quickly scan events visually. To do this, first create a text
file called beamon.txt containing a large number of identical lines:

/run/beamOn 1

/run/beamOn 1

/run/beamOn 1

... many more identical lines
Then invoke gdbeamline like this:

G4bl input.file viewer=best <beamon.txt

Once the viewer appears, it will display the first event. To see the next event, select the File/Escape
menu item. This will suspend the Openlnventor viewer, and the Geant4 input routine will read the next
line of beamon.txt — that causes it to track one event and refresh the viewer with it. Just keep selecting
File/Escape to sequence through events one at a time. This is essentially what the g4blgui program does
when a viewer is selected.

1/10/14 TIR G4beamline User’s Guide 23

2.8.4 Troubleshooting

Visualization is usually the only part of G4beamline that causes problems for users getting it to work on
their systems. In general, on Linux and Mac OS X a working X-windows display is required; this means
on Linux you usually will run one of the common desktops (KDE or Gnome), and use a terminal
window to execute the G4beamline program. On Mac OS X you may need to run the X11 application,
and either run g4b/ from an xterm or specify the DISPLAY manually (since Leopard the X11 application
gets run automatically when a connection to the X-Windows display is made).

G4beamline visualization requires that both the Motif and the OpenGL extensions be configured on the
display. This means that both the X-windows client (the G4beamline program) and the X-windows
display server (the display+keyboard+mouse) need them installed. If you run G4beamline on your
desktop Linux system, this usually happens naturally, but if you connect from your desktop to a Linux
server and run G4beamline there, then you must make sure these extensions are installed on both
systems. In particular, if you use the Exceed program on a Windows desktop to connect to a Linux
server, be sure to install Exceed’s OpenGL extension. This also applies to Mac users (G4beamline is an
X-windows application, not a native Mac application).

On Windows, all necessary graphics extensions should be installed by default. Remote displays (e.g. via
Citrix) should work as usual.

If you run g4bl with a viewer parameter, and it crashes with the error message “Xlib: extension GLX
missing on display :0.0.” (or similar), this means you must install the OpenGL extension (g/x) on the
system you are using to display. That message may well be followed by a lengthy trace of function calls.
If, instead, it crashes with the error message “error while loading shared libraries: libGL.so.1: cannot
open shared object file: No such file or directory” (or similar), this means you must install some
necessary system library on the system you are using to run g4dbeamline — see README-*.£x¢ for
details.

G4beamline X-windows visualization will operate over a network, but its performance will be slower
than running locally, even over a 100 Mbit/s LAN. The easiest way to do this is to use ssh with X-
windows forwarding enabled (the —X switch, which is often supplied by default when the ssh client is
run from a terminal window). In some cases (particularly on a Macintosh) the —Y switch may be needed
instead.

2.9 Obtaining Results — Virtual Detectors and other NTuples

While Geant4 can be used to make quite detailed models of detectors and their readouts, at present
G4beamline does not attempt to do so. The primary purpose of G4beamline is to track particles and see
where they go (or don’t go). The most common way to obtain output is by using a command that
generates an NTuple.

2.9.1 Track NTuples

A Track NTuple is simply a set of tuples generated for each particle that meets the requirement for
generation; the columns are fields with names, and the rows are the individual track hits. The list of
fields is given below.

1/10/14 TIR G4beamline User’s Guide 24

The following commands generate an NTuple for tracks:

* Avirtualdetector is an idealized perfect detector that “detects” every track that hits it, and
measures all of the track properties with the resolution of a 32-bit float (including position, 3-
momentum, particle type, event #, etc.). It is “virtual” because any material (including Vacuum)
can be used and by default it uses the material of its parent so it doesn’t affect the tracking of
particles. Multiple tracks from a given event that hit the virtualdetector will be stored as separate
rows in the NTuple (with the same EventID), as will multiple hits from a single track (with the
same EventID and TrackID). The measurements for all such tracks are output to a file as an
NTuple.

* A detector is similar to a virtualdetector, except it must have a realistic material (default is
Scintillator). It output the track information as above, plus the energy deposited and the visible
energy deposited (modified by the Birks effect).

* A zntuple is similar to a virtualdetector, except that no physical volume is used; whenever a
track reaches the specified Z position (centerline coordinates), it is sampled in the same manner
as a virtualdetector. All zntuple-s are named “Z100” with the number being its Z position
rounded to the nearest millimeter. Note that the zntuple can span multiple physical volumes,
while the virtualdetector cannot.

* A timentuple samples the tracks at a specified time.

* A newparticlentuple samples tracks when they are created.

* A beamlossntuple samples tracks as they are killed.

* An ntuple is a collection of the data for one or more other NTuple-s, with each row of the
NTuple being a single event or track, and the columns being the union of all included NTuple-s,
in order. Any NTuple generated by any of the above commands, including ntuple itself, can be
included in this NTuple, as long as the other commands precede this one in the input.file.

* A traceis an NTuple generated for a single track. The rows of the NTuple are the series of steps
taken by tracking, and the columns are the same as for a virtualdetector plus the electromagnetic
fields (B and E). Each track is a single NTuple (a separate file in ASCII formats).

Normally each virtualdetector generates an NTuple for its hits (singles), as does zntuple. The ntuple
command can be used to combine multiple virtualdetector and zntuple data into a single NTuple, with
each row of the NTuple containing all data for a single event (if multiple tracks of the event hit a given
virtualdetector or zntuple, only the first is kept in the NTuple).

By default, all NTuples are written to a single Root [5] output file. A Root-based histogramming
program, HistoRoot, is available from http://historoot.muonsinc.com, which can generate histograms in
a very flexible and intuitive manner from Root files and ASCII files, via a graphical user interface. In
the future, G4beamline may be extended to use other formats for NTuples as well.

The format=ascii argument to these commands writes an ASCII file for each NTuple containing one
track per line, with comments at the start giving the variable names and their units. The historoot
program can read these ASCII files, including the variable names from the initial comment. Gnuplot
[10] can also be used to generate plots from these ASCII files.

The standard fields of an NTuple generated for tracks contains the following variables (in order):
Name Description
X,V,Z The position of the track, in the selected coordinates. Millimeters.

1/10/14 TIR G4beamline User’s Guide 25

Px, Py, Pz The momentum of the track, in the selected coordinates. MeV/c.

t The global time of the track. Nanoseconds.

PDGid The ID of the particle, using the assigned value from the Particle
Data Group.

EventID The event number.

TrackID The track identifier.

ParentID The track identifier for this track’s parent; 0 if this is a beam track.

Weight The weight of the track (defaults to 1.0).

TrackIDs are supposed to be unique within each event; they normally start at 1 for the beam particle(s).
Secondary particles’ TrackIDs normally start at 1000 and increment sequentially for additional
secondaries.

The trace command adds the following fields to the NTuple, after the standard fields:

Name Description
Bx, By, Bz The magnetic field at the track’s position, in the selected
coordinates. Tesla.
Ex, Ey, Ez The electric field at the track’s position, in the selected coordinates.
Megavolts/meter.

The format=Extended, format=asciiExtended, or format=rootExtended argument to these commands
adds the following fields to the NTuple, after the standard fields and the B and E fields from the trace
format:

Name Description
ProperTime The proper time of the track since it was created. Nanoseconds.
PathLength The total path length of the track since it was created. Millimeters.
PolX, PolY, PolZ | The polarization of the track in the selected coordinates.
InitialKE The Kinetic Energy of the track when it was created. MeV.
2.9.2 printf

The printf command generates a printout in a user-specified format for every track that reaches its
specified Z position; the standard fields above can be used in expressions to be printed via conversion
specifications in the printf format string. Output can be to stdout or to a file, and multiple printf-s to the
same file will be output to the file in the order tracks reach their Z positions, and in the order the printf-s
appear in the input file for the same Z position. This permits ASCII output of track information in any
desired ASCII format, perhaps to feed directly into some other program.

2.9.3 profile

The profile command prints a computation of the means, sigmas, and emittances for all tracks at a given
Z position.

2.9.4 totalenergy

The totalenergy command totals up the energy deposited by all tracks of a run in selected physical
volumes, and prints the results at the end of the run. Output defaults to stdout, but can be put into a file.
With appropriate post-processing this can be used to estimate heat loads in specified volumes.

1/10/14 TIR G4beamline User’s Guide 26

2.10 Random Number Generator

G4beamline uses the default Geant4 random number generator (which is HepJamesRandom from
CLHEP [2] — see the CLHEP documentation for details). It is an excellent pseudo-random number
generator that essentially guarantees no repeat sequences when seeded by any integer between 0 and 900
million. At the start of each event, G4beamline seeds the random number generator with the event
number. This permits the user to submit multiple jobs in parallel with confidence, as long as the beam
command arguments are arranged so no two jobs run events with the same event numbers — quite
effective when using a Linux cluster. This also permits the user to re-run the same events (as long as the
input file remains unchanged — the slightest change can cause tracking to use a different number of
random numbers, and thus the runs of the same event number won’t be the same). A good use of this last
capability is to find an “outlier” event in some histogram, determine its event number (via narrow cuts in
historoot) and re-run it with visualization to see what actually happened.

Note that due to their internal designs, Root NTuples cannot precisely represent event numbers larger
than 16 million (a float with 24 bits of mantissa). This does not affect the ability to handle larger
datasets, it just means that the event numbers will be rounded to a 24-bit mantissa. ASCII formats for
track NTuples do not suffer from this limitation.

2.11Tuning the Beamline

Just like a real beamline, a simulated beamline must be tuned to maximize transmission and achieve
various desired characteristics. G4beamline is not intended for the design of beamlines, but rather is best
used for the evaluation of them. Conventional beam optics design programs can be used to determine the
beamline elements and their parameters. These programs, however, usually make approximations and
ignore many subtle effects that G4beamline implements (e.g. fringe fields, non-Gaussian multiple
scattering tails, energy loss straggling, hadronic interactions in collimators and other apertures, non-
Gaussian tails in beam profiles, etc.). The result is that just as in the real world the design programs give
only approximate values.

So two methods of tweaking the tune are provided:

1. The reference command can tune its referenceMomentum in order to make the reference particle
have a specified tuneMomentum at a specified tuneZ position (centerline coordinates). This is
most useful for a beamline with material that induces a significant energy loss in the reference
particle, such as muon cooling channels.

2. The tune command can be used to tune any tunable argument to any set of elements. This
includes the By field argument of genericbend and idealsectorbend, and the maxGradient
argument of pillbox.

See the online help, or section 5, for details about these commands. Tests 29-32 verify the operation of
these tunes, and provide working examples.

To aid the user in fine tuning the beamline, g4beamline implements the ability to track a “Tune” particle
and a “Reference” particle before tracking the beam (both are controlled by the reference command).
These particles are tracked with all stochastic processes disabled, and nominally go right down the
centerline of the beam. The Tune particle is used to tune all desired beamline elements, and the tuning
process often forces it to be tracked multiple time through sections of the beamline; after tuning is

1/10/14 TIR G4beamline User’s Guide 27

completed then the Reference particle is tracked to give a clean readout of the reference trajectory, and
computation of the reference coordinates (if used).

The Tune particle can be used to:
1. Automatically set the timing of RF cavities so the Reference particle arrives at the desired RF
phase.
2. Automatically set the gradient of RF cavities so the desired acceleration of the reference particle
is achieved.
3. Automatically set the field of bending magnets so the Reference particle is parallel to the
centerline downstream of the magnet.
4. Automatically determine the initial momentum of the Reference particle so that it has a specified
momentum at some later point in the beamline.
Unfortunately, this method cannot be used to tune the position of bending magnets (because of their
fringe fields, the center of a bending magnet must normally be offset by a small distance downstream of
the corner in order to make the Reference particle go right down the centerline after the magnet).

As an example, consider tuning the By value of a genericbend:

reference referenceMomentum=200 particle=mu+ beamZ=0.0

tune Bl z0=100 z1=3000 initial=-0.6500 step=0.01 expr=Px1/Pzl \
tolerance=0.000001

genericbend B fieldWidth=500 fieldHeight=500 fieldLength=500 \
ironWidth=800 ironHeight=800 ironLength=500 \
fieldMaterial=Vacuum

place B z=2000 rename=Bl rotation=Y15 By=Bl

corner C z=2000 rotation=Y30

The tune command specifies to tune the value “B1” so that at Z=3000 the expression “PxI/Pz1” will be
zero to within the tolerance of 0.000001. That is, that the Reference particle be parallel to the centerline
within a microradian. The genericbend named “B1” uses the tune variable “B1” as its By argument
value. What happens is that when the Tune particle reaches z0=100, it is saved and tracked to z1=3000
(which goes through the genericbend B1). When the Tune particle reaches z1=3000, the expr “Px1/PzI1”
is evaluated, and if it is within folerance of zero the tuning is complete. If it is out of tolerance, a simple
linear solver is used to update the value of the variable B/, and the saved track from z0=100 is re-
tracked to z1=3000 and the process is repeated. If the process does not converge with 10 attempts, the
tuning fails and the program exits; information about each step is written to stdout.

The other tune procedures are similar, in that the Tune particle track is saved upstream of the region to
be tuned, and downstream of the region its properties are used to modify a variable that affects the
tuning, and the saved track is re-tracked until the result is within tolerance.

In practice, it is often necessary to use multiple tune commands. They must be properly nested so each
tuning region is either disjoint from the others, or is wholly contained in one or more other regions
(separation of ~0.01 mm is usually adequate). For instance, in a muon-cooling channel with bending
magnets and RF cavities it is probably necessary to tune the reference momentum, the bending magnets,
and the RF gradient(s).

Note that gdbeamline can only tune based on the Tune particle, and can only tune funable arguments to
certain commands. These limitations are due to technical details of the implementation, and cannot

1/10/14 TIR G4beamline User’s Guide 28

easily be relaxed. No aspect of the geometry can be tuned via the Tune particle. Note this also does not
include tuning quadrupoles to achieve a specified focus, because that would require tracking many beam
particles and tuning to achieve a specified distribution. Because g4beamline can be easily scripted,
however, it is possible to do this manually via scripts or an external program. Such an external method
can tune any parameter or argument to any element, including geometry. See sections 7.18 and 7.21 for
details.

Examples: The program triplet.sh in the examples directory focuses a quad triplet for a point-to-point
focus. In the test directory, test29, test30, test31, test32, and test35 verify the tuning of each of the above
quantities.

2.12The Geant4 User Interface

Geant4 has its own command line processing and user interface. For the most part this is not used in
G4beamline. Some Geant4 commands can be simply placed in the input.file because all input lines
beginning with “/” are interpreted as Geant4 commands; they are executed immediately upon being
encountered in the input.file. In most cases, that is not what is needed, because the commands must be
deferred until the geometry has been set up — see the g4ui command for that.

The viewer.def file contains Geant4 commands used to initialize and use the various visualization
drivers. The selected section is automatically invoked when visualization is specified via the viewer=...
argument to the command line.

2.13Event Time Limit

Every event is subject to a per-event time limit. This is controlled by the parameter eventTimeLimit,
which defaults to 30 (seconds), but can be set by the param command. As long as the program is taking
physics steps, this time limit will cause the current event to be killed and the next event to be simulated
(restarting the time limit). In case the code gets into an infinite loop, an alarm is set at the start of each
event for eventTimeLimit+10, and if this fires, the entire program will be aborted (recovery is not
possible); this prevents it from exhausting your CPU allocation on a cluster.

Note that systems with stable particles and electromagnetic traps can run literally forever. You may not
think your system has this property, but low energy delta rays (e’) can surprise you. Note also that
putting a medium- or high-energy electron or photon into a block of material can generate many
thousands of secondaries, which can take a very long time to track.

A different type of time limit is implemented via the maxTime argument to the trackcuts command; it is
a limit on the global time in the simulated world.

2.14Wall Clock Limit

An additional processing limit is determined by the parameter wallClockLimit. It defaults to -1, indicting
an infinite time limit. Setting it to a positive value will limit the run time to that many seconds. This is
most useful on a supercomputer where jobs are limited by wall clock time. Note that it can take several
seconds to several minutes to close up, so the value of the G4beamline parameter should be suitably

1/10/14 TIR G4beamline User’s Guide 29

smaller than the limit of the job. This limit is checked only between events, which is another reason it
should be smaller than the job limit.

2.15Event and Track Numbering (EventID, TrackID)

EventID is intended to identify a particular event (which may have multiple tracks). In G4beamline,
each beam track is a separate event. For internally generated beams, EventID is incremented for each
beam track and is thus unique within a given run. For beams read from external files, the assignment of
EventID-s to tracks is contained in the file — this means that multiple events can have the same EventID,
and that EventID-s might not be monotonically increasing.

Moreover, NTuple-s use float-s to hold each data item, and a float has only 24 bits of mantissa. This
implies that any event number > 16,777,216 will be truncated. This applies to both reading and writing
Root files. Two workarounds avoid this truncation for many cases:

¢ BLTrackFile format (ASCII) avoids the truncation internally, both reading and writing.

* Commands that generate a track NTuple will map format=ascii to format=bltrackfile. This

includes: beamlossntuple, newparticlentuple, timentuple, virtualdetector, zntuple.

The result is that this truncation of EventID occurs only for Root NTuples and in the nfuple command,
neither of these can be avoided without massive changes that adversely affect users.

TrackID is intended to identify a track within an event. For internally generated beams the primary track
has TrackID=1, but for beams read from external files the assignment of TrackID to tracks is contained
in the file — this means that multiple tracks with identical EventID-s can have the same TrackID-s.

Moreover, secondary tracks can be generated during the simulation of an event, and the TrackID-s for
them can potentially conflict with TrackID-s read from a file. By default, secondary TrackID-s are
assigned starting at 1001 (see secondaryTrackID of the beam command). If a beam track from an
external file has a TrackID > secondaryTrackID, a warning will be printed. For beam files containing
TrackID-s > 1001, setting secondaryTrackID in the beam command can avoid both the potential
confusion and the many warnings.

2.16Signals

G4beamline responds to signal SIGUSR! by flushing all NTuples to disk. So for a long job you can look
at intermediate results.

G4beamline responds to signal SIGUSR?2 by closing up and exiting cleanly. In each worker this is

detected between events. This is especially useful on Hopper, as SIGUSRI and SIGUSR? are the only
signals users can send to the application; all others cause immediate termination without saving results.

1/10/14 TIR G4beamline User’s Guide 30

3 Important Values that Affect the Validity and
Accuracy of Simulations

Particle simulations are inherently complicated and CPU intensive. The Geant4 toolkit necessarily
provides facilities to permit users to make trade-offs between accuracy and CPU time. G4beamline
likewise considers this a user issue, and provides interfaces to Geant4 mechanisms as well as some new
capabilities. To perform simulations that yield results you can trust, you must make some choices that
affect the accuracy and validity of the results. It is often equally important to avoid becoming
overwhelmed by useless information. Features related to these are described in this section.

3.1 Physics List

The Geant4 toolkit contains a large number of physics processes that implement the transportation,
decays, and interactions of particles. In addition, Geant4 is extensible, and users can construct their own
physics processes. These processes are numerous and complex, and often have complex relationships
between different processes, so it is a challenge for users to become sufficiently knowledgeable to select
the necessary processes and implement them in code. As a result, the Geant4 collaboration has
constructed a number of “physics lists” that are crafted from the library of physics processes to be
suitable for a specific user domain.

G4beamline shields the user from much of this complexity, and only offers to the user the choice among
the Geant4 physics lists, plus a few additional lists constructed for special purposes. In particular, it is
not possible for users to implement a new physics process in G4beamline without building the program
yourself (that is rather complicated, but you can request a new feature to have us do it — see section 7.3).
The physics list is selected by the physics command, and the set of available lists is given in the help text
for that command (see section 7.4).

As a rule of thumb, for incident particles with kinetic energies above 12 GeV or so, the “standard”
physics list is FTFP. For incident particles with kinetic energies above about 100 MeV, the “standard”
physics list is FTFP_BERT (it is noticeably slower than FTFP below ~12 GeV). The electromagnetic
processes of these physics lists are advertised to be valid above a few hundred electron Volts; Geant4
has a set of low energy electromagnetic processes, indicated by a suffix “ EMX” in the physics list
name. The suffix “ EMV” indicates electromagnetic processes tuned for better CPU performance with
only slightly less precision.

3.2 Tracking Accuracy Parameters

There are a number of values in Geant4 that affect the accuracy of its tracking. The important ones are
implemented in G4beamline as parameters, and they can be set anywhere in your input.file with the
param command (the final value is what matters). These control such things as how close to a geometric
boundary a track must come before it is considered to have hit the volume, how far a track can deviate
from a straight line during a single step (due to a magnetic field), etc. They are:

1/10/14 TIR G4beamline User’s Guide 31

Parameter Name Default Description

deltaChord 3 mm

deltalntersection 0.1 mm See the Geant4 Physics manual and User’s Guide for a

deltaOneStep 0.01 mm description and discussion.

epsMax 0.05

epsMin 2.5E-7

maxStep 100 mm The maximum physics step permitted to be taken. Note this is
a limit on the physics step; integrating the equations of motion
will take multiple “integration steps” within this. Can be
overridden in each element.

minStep 0.01 mm The minimum physics step permitted to be taken.

zTolerance 2 mm How close to a specified Z position a step must occur (the two
steps surrounding the Z position are then linearly interpolated).

These parameters specify the trade-off between tracking accuracy and CPU time. These are reasonable
values for beamlines or detectors of ordinary sizes (with scales from roughly a few millimeters to a few
tens of meters; the length of a narrow beamline can reasonably extend to a few kilometers). If you have
objects smaller than a millimeter or so, or are working on scales larger than a kilometer or so, you
should consider changing these values appropriately. If you have small objects spread over a large
volume, in general you should select parameter values appropriate for the small objects and realize that
the simulation will most likely require lots of CPU time.

Note that Geant4 tracking has two different meanings of the word ‘step’:
Physics step Defaults to a maximum of 100 mm, and determines the maximum step for
applying physics processes. At each step it is set to the smallest value of:
o the current value of maxStep
o the distance to the next geometrical boundary
o the smallest value determined by any active physics process
Integration step Determined automatically from the other tracking parameters (primarily
deltaChord), and determines the accuracy of the integration of the equations of
motion. In a magnetic field this is of course a helix. There can be many
integration steps within a single physics step, and usually are in a magnetic
field.
In particular, the accuracy of the tracking is usually not significantly improved for small physics step
sizes. For instance, tracking 250 MeV/c muons through 1 meter of liquid hydrogen in a 2 Tesla solenoid
(including multiple scattering and energy loss) shows no significant difference between maxStep=1 and
maxStep=1000 in position or momentum histograms® — the execution time differs by a factor of about
50, so don’t set maxStep to a small value unless you have a specific reason to do so.

* This comparison can only be done statistically, not on an individual track basis, because different values of maxStep
inherently use different numbers of random numbers, causing variations in stochastic processes like multiple scattering and
ionization energy loss.

1/10/14 TIR G4beamline User’s Guide 32

3.3 Electromagnetic Field Map Tolerance

Several elements that implement electromagnetic fields internally construct a field map, because
evaluating the field during tracking is too CPU intensive. These are: coil and fieldexpr. They each have a
tolerance argument that is used to determine the required grid spacing of the map. Its value obviously
affects the accuracy of the simulation. This is of course also true for externally supplied EM field maps.

3.4 Secondary Creation Threshold in Physics Processes

An important trade-off between physics accuracy and CPU time in Geant4 is the production of low-
energy delta rays (e) and other particles, which diverge at low energies. The approach is to only
generate a secondary when the range of the particle in the current material exceeds a user-specified
minimum range cut (which is converted to a kinetic-energy threshold for each material). Particles with
shorter ranges are not produced as secondaries, but are lumped into the continuous ionization energy
loss in the material. In G4beamline, this is set by the minRangeCut argument to the physics command;
its default value is 1 mm. If your simulation has objects smaller than that, or you are working at scales
much larger than that, you should consider changing its value, unless you just don’t care about these
low-energy particles.

3.5 Track Cuts

The trackcuts command applies cuts to every track both before starting to track it, and at every step
while tracking. These can obviously affect the realism and accuracy of the simulation; they also can be
quite useful for weeding out extraneous information (e.g. the neutrinos generated by pion and muon
decay). The cuts it can apply are:

Argument Name Default Description

kill (empty) Comma-separated list of particles to kill.

keep (empty) Comma-separated list of particles to keep (kill all others);
ignored if empty.

killSecondaries 0 Set nonzero to kill all secondaries.

kineticEnergyCut 0 MeV Minimum kinetic energy to track.

kineticEnergyMax | Infinite MeV | Maximum kinetic energy to track.

maxTime 1000000 ns | Maximum lab time to track.

In addition, there is a processing time limit implemented as a parameter, eventTimeLimit (defaults to 30
seconds). This applies to the real time used during the processing of all tracks in the event. For
simulations in which showers are important (and are not suppressed), this may need to be increased.
Unfortunately, it is implemented as a real time limit, not a CPU time limit, so on excessively loaded
systems it may also need to be increased (not usually a problem). There is also a wallClockLimit that
will exit the simulation gracefully when the total wall clock time exceeds its value (default is infinite).

1/10/14 TIR G4beamline User’s Guide 33

3.6 Fringe Fields

Real magnets have fringe fields, and G4beamline makes an attempt to model them. The model is based
on that in Cosy Infinity [13], and uses Enge functions with six parameters {a; ... ag}:
(Z - Zedge)
aperture
if(s< —4) Enge(s) = 1
if(s>4)Enge(s)= 0
Enge(s) = 1/(1 + exp(a; + a,s + azs? + a,s® + ass* + ags®))

s = fringeFactor *

Both genericbend and genericquad have reasonable default values for these parameters. The command-
line can set fringeFactor and fringe="a,, a,, as, a,, as, ag’ (all must be real numbers). The user must
ensure that the parameter values result in a smooth Enge function with correct limiting behavior.

3.7 Stepping and Hard Edges

If your simulation has hard-edge fields, then beware of the interaction between the stepping during
tracking and these hard edges. In particular, tiny changes in track parameters can have much larger
effects on the tracking, because one more or fewer steps occurred in the field region. This can also occur
for the edges of physical components, as one more or fewer steps occur inside a material. The effects
can be minimized by setting maxStep to a small value (e.g. 1 mm), and by ensuring that every hard-edge
field corresponds to a geometrical boundary (e.g. don’t use openAperture=1).

Usually this is not a big problem, as the effects normally are both small and inherent in the monte-carlo
method. This can be bothersome when making a detailed comparison with some other code or an
analytic result.

3.8 Radiative Decays

Decaying particles can always emit an extra gamma (or more than one), which is called a “radiative
decay”. It is not generally realized how frequently this occurs, or how important it can be in some cases
(generally backgrounds). For a multi-TeV muon facility, the radiative muon decays’ produce an intense
gamma beam parallel to the muon beam; for gamma energies above 1 GeV it can be comparable in
number to the muon decays, with gamma energies up to hundreds of GeV — this is a background above
and beyond that of the decay electrons, and cannot be ignored.

The Geant4 Decay process does not include radiative decays. The MuonDecayWithSpin process does
include them, and can be enabled on the physics command by setting spinTracking=1 (works even with
unpolarized muons).

? The PDG booklet lists the branching ratio for radiative muon decay as 1.4%, with a note stating this is for gammas with
energies above 10 MeV. For a TeV-scale muon beam, gammas of much lower energy get boosted to multi-GeV energies; the
branching ratio for them is about 25% when using MuonDecayWithSpin.

1/10/14 TIR G4beamline User’s Guide 34

3.9 Miscellaneous

There is a bug in Geant4 tracking that makes gross errors when tracking a particle that stops and
turns around (e.g. it is traveling exactly opposite to an E field sufficient to stop it). This has been
reported as Geant4 bug #1021, and the command bug/021 implements a work-around that
resolves the issue with an accuracy of a few microns. This is a difficult problem, as Geant4
tracks in space (not time), and for a stopping particle the equations of motion become singular.
A number of Geant4 processes have auxiliary commands that can vary their operation. See the
Geant4 documentation for details; in most cases, these are not important, but when they are, the
g4ui when=0 command can be used to execute the necessary Geant4 commands.

Geant4 tracking requires that the simulated world’s geometry be a rigorous hierarchical
structure; violations of this requirement can cause gross tracking errors. By default, G4beamline
performs a geometry test to check for invalid volume overlaps and conformance to this
requirement; failures generate a warning but permit the simulation to proceed. The geometry
command controls its parameters. Section 8.2 discusses when these rules can be violated without
affecting the simulation results.

The pseudo random number generator is normally seeded with the event number immediately
before starting to process an event. The generator used has excellent properties when seeded with
integers from 0 thru 900,000,000. This behavior can be changed via the randomseed command.
As in real beamlines, shielding is required in realistic simulations. See section 7.9.

Individual physics processes can be disabled via the disable and doStochastics arguments to the
physics command. A list of the physics processes used in the current physics list is available
from the /ist command.

1/10/14 TIR G4beamline User’s Guide 35

4 Input File Description

A G4beamline simulation is completely specified in a single ASCII input file, plus whatever auxiliary
files it references (e.g. magnetic field maps, window profiles, etc.).

Each line in the input file is either a comment or a command. Comments are blank lines, lines beginning
with ‘#’, and lines beginning with ‘*’ (which are printed to stdout, giving a convenient method to
document your output files). Lines beginning with /> are commands passed directly to the Geant4 user
interface command interpreter (this happens before the geometry is initialized; see the g4ui command to
defer execution of Geant4 Ul commands). Lines beginning with “!”” are passed directly to the shell (with
the °!” stripped). On any line, ‘#’ introduces a comment-to-end-of-line if it is preceded by a space or tab
and is not enclosed in quotes.

A command is a single line beginning with the command name (optionally preceded by white space),
followed by any number of arguments. Lines can be continued by preceding the ending newline with a
backslash (\). Commands can have any combination of positional and named arguments, which are
separated by white space (spaces or tabs). A named argument is of the form “name=value”, where the
name is like a C identifier except it can also contain the characters ‘+’ and ‘-’ (which are needed for
particle names). If spaces or tabs are present in the value, the entire value must be enclosed in single- or
double-quotes; this delimiter cannot appear in the value. Any argument that is not named is positional,
and its value can also be enclosed in single- or double-quotes; positional arguments are conventionally
given first, but can be intermixed with named arguments. The order of positional arguments is
important, but the order of named arguments is not.

This command has 2 named arguments:
param histoFile=histoscope.hst histoInterval=100000

This command has 1 positional and 4 named arguments:
tubs Target outerRadius=10 length=100 material=W color=1,1,1
This command has 3 positional arguments (the last 2 are each themselves a command that will be
invoked when the defined command MyMacro is used):
define MyMacro \
“tubs $1 outerRadius=10 length=100 material=$2 color=$3" \
“place $1”
That macro is used like this:
MyMacro TubsName Fe 1,0,1

Command files can be nested; see the include command.
Simple macros can be defined, with arguments; see the define command.

The value of a named or positional argument can come from a parameter by using a ‘§":

param H=10.0 W=20.0 L=30.0

box BoxName width=S$W height=S$H length=$L
Note that $parameter substitution occurs only within the value of a parameter; this can be combined
with arithmetic expressions for numeric arguments:

box Box.S$H.SW.SL width=S$W+10 height=$H*2.0 length=sqgrt (SL)

1/10/14 TIR G4beamline User’s Guide 36

The param command is unique in that when the value of any argument is a valid numerical expression
containing at least one operator, the expression will be evaluated and the parameter will be defined as
the number (rather than the string of the expression). This permits the computation of rotations (the
value of the rotation argument is a string containing multiple numerical values):

param angle=atan2 ($a, $b)*180/3.14159

place Element rotation=XS$angle, Y90

4.1 Expressions

Expressions can be used for the value of any integer or double argument to any command. They are
evaluated during command processing, and generally must involve only double values and the operators
and functions listed below. Parameter expansion ($paramname) can be used as long as the string value
of paramname is valid where it appears in the expression. Some commands expand the expressions to
include certain variables (e.g. the Bx argument to fieldexpr can be an expression involving X,y,z).

In the param command, if the value of an argument is a valid numerical expression, the parameter is set
to the numerical value rather than to the expression string.

All values are doubles; for integer parameters the conversion occurs after the expression is evaluated.

The following arithmetic operators can be used in expressions: + - * /(). Note that * means
exponentiation to an integer power (use pow() for a double exponent). Note that % is not implemented.

The following comparison operators can be used in expressions; they evaluate to a value of 1.0 (true) or
0.0 (false): < <= > >= == |=

The following logical operators behave as in C: || &&.

DO NOT USE the bitwise operators (& | ~), as these bitwise operations behave rather strangely for
double values.

The a?b:c operator is not implemented but there is a similar if(a,b,c) function.

The following functions can be used in expressions: abs(), min(),max(), sqrt(), pow(), sin(), cos(), tan(),
asin(), acos(), atan(), atan2(), sinh(), cosh(), tanh(), exp(), log(), log10(), floor(), ceil(), if(). All take 1
argument except min(), max(), pow(), and atan2() take 2 arguments and if() takes 3.

The following constants are pre-defined: pi, e, gamma, radian (=1.0), rad (=1.0), degree (=pi/180.), deg
(=pi/180.).

4.2 Element Names

When you create an element (e.g. using the tubs command), you must specify its name as the first
positional argument. When you place it into the simulated world, its name must be the first positional

1/10/14 TIR G4beamline User’s Guide 37

argument to the place command (it can be renamed when placed). Element names can be any string, but
conventionally obey the rules of a C identifier.

Element names are necessary to correlate the definition and placement of each element. They are also
used to report errors in the geometry test, and are listed in the traces when stepping. The name of a
virtualdetector becomes the name of its NTuple.

When elements are placed inside another element, the name of the parent is prepended to the name of
the placed daughter, so the name shows its element hierarchy. This makes it desirable to capitalize the
first letter of each name. The “World” volume-name is not prepended (otherwise it would apply to every
element name). The rename= argument to the p/ace command can be used to override the name of the
element (the default is without the parent’s name, but rename=+Xyz will prepend the parent’s name to
Xyz); ‘#’ can be used to automatically number multiple placements (see the p/ace command in section 5
for details).

There are several independent name spaces used by various commands:

Type Defined by Used by
Element names Element definition commands place command
Virtualdetector names | Name of the virtualdetector, as placed ntuple command
Material names Material command Element definition commands,
(many materials are predefined). material=name argument
Coil names coil command solenoid command
Parameter names param command param command, $name

4.3 Parameters

Parameters are named ASCII strings that can be used in the input.file to set command arguments, and
some are used to control the program. They can be set either on the command line or by the param
command. They are stored internally as ASCII strings, and when they represent an integer or floating-
point value they are converted when used (invalid values are errors). When a parameter that has not been
defined is used, it will be automatically defined from the environment if possible; otherwise using an
undefined parameter generates an error (this is especially useful in Grid jobs, which may need
$OSG_WN_TMP in every filename).

A parameter can be used in the value of any argument to any command:

tubs Name length=S$length outerRadius=S$radius
In this example, it is necessary to define the parameters length and radius before this command is
issued; that can be either earlier in the input.file or on the command line. Here the string definitions of
both parameters length and radius must be valid floating-point numbers (or expressions):

(earlier in the input.file)

param length=100.0 radius=10.0
Or on the command line:

g4bl input.file length=100.0 radius=10.0 [..]
Note that once the parameter is defined, it can be used any number of times to give the values of
command arguments. That can be used to avoid having to change many identical numerical values

1/10/14 TIR G4beamline User’s Guide 38

throughout the input.file. It can also be used to collect all of the variable values of input.file in one place
near the top, or even in a separate definition file (see the include command).

This is a limited macro facility, and can only be used to substitute the string value of a parameter into a
command argument (named or positional). For integer and double (real) arguments, arithmetic
expressions involving constants can be used (including common functions like sin() and sqrt()):
param a=3.0 b=2.0 name=Name
tubs S$name length=$a+$b outerRadius=sqgrt ($b)*10

In the param command only, argument values that are a valid numeric expression with at least one

operator are converted to the value of the expression. This permits such parameters to be used to

perform computations for rotations (and colors, if desired):
param angle=atan2 ($a, $b)*180/3.14159
place Element rotation=XS$angle,Y90

NOTE: $name used in a macro body (the define command) is substituted when the macro is defined, not

when the macro is expanded. $$name in a macro body will be expanded when the macro is invoked.

It is possible to re-define the value of a given parameter name within input.file; the value substituted for

$name is the most recent definition preceding its use. Because this can be confusing to humans, it is
discouraged (except for the do and for commands). The —unset argument to param will set parameters

only if they are not already defined; this is useful to put default values of parameters into input.file while
permitting them to be overridden on the command line; it does not work for parameters used to control
the program (they are pre-defined with default values).

4.3.1 Program Control Parameters
Several parameters are used internally by G4beamline to control its operation:

Name Default Description

viewer “none” Determines the mode of the program, visualization or
tracking. Also determines the visualization driver to use.
See section 2.8 above.

steppingVerbose | 0 When nonzero causes each step to be printed to stdout.

steppingFormat | (see below) The format of lines printed by steppingVerbose.

histoFile g4beamline.root | The histogram output filename.

histoUpdate 0 When nonzero causes G4beamline to update the histoFile
after each block of this many events have been tracked.

worldMaterial Vacuum The material of the World volume.

Zcl - Initially 0, the place command sets Zc/ to the downstream Z
position of the placed element, when using Centerline
coordinates (not for Global coordinates or placements into
elements other than the World). The user can set Zc/, but
that has no effect on the place command.

eventTimeLimit | 30 CPU Time limit on each event (sec)

fieldVoxels 200,200,200 Size of voxels for field computation (mm,mm,mm)

maxStep 100 Maximum physics step size, global. Each element can have

its own value for maxStep.

1/10/14 TIR

G4beamline User’s Guide

39

wallClockLimit | -1 Limit on wall clock time for the entire job (seconds). <0
means infinite.

There are also parameters that control the values of Geant4 tracking parameters, discussed in section 3.2.

The steppingFormat parameter controls how the steppingVerbose printing is performed. It is a sequence
of names of track attributes (separated by commas or spaces):

EXT toggle extended precision (3 more digits)
TAG print a >' (useful to grep output)
N step number

NSTEP Synonym of N

GLOBAL X,Y,Z,T in global coords
XYZT Synonym of GLOBAL

CL X,Y,Z,dxdz,dydz in CL coords
CLX extended precision CL

KE kinetic energy

STEP step length

STEPLEN Synonym of STEP

VOL volume name

VOLNAME Synonym of VOL
PROCESS process name

B magnetic field

E electric field

P 3-momentum

MAT material name

ID event ID, track ID, parent ID
PART particle name

SEG centerline coord segment number
WT weight

POLAR polarization

NL <newline>

NEWLINE Synonym of NL

\n Synonym of NL

The default format is “N GLOBAL CL KE STEP VOL PROCESS”. These names are insensitive to
case.

See the printf command for another way to display track information, and the trace command for a third.

4.4 Pillbox Geometry and Dimensions

The geometrical dimensions of the pillbox are given in the figure below showing a radial cross-section.
The pipe, walls, and collars are always made of copper; the stepped windows (winl and win2) are made
of winMat, and the interior of the cavity is cavityMaterial. The entire pillbox is cylindrically symmetric
around the beam axis. The winl-s, the win2-s, the collars, the walls, and the pipe can each be omitted by
setting the corresponding thickness to zero.

1/10/14 TIR G4beamline User’s Guide 40

pipeThick

(cavityMaterial)

innerRadius wallThick

A
collarRadialThick: collarThick

v
A . .
:irisRadius > <— win2Thick
] .
V. S
. 1 winlouterRadius > <— winlThick
—_————e— = Y N Y

Beam axis

4.5 Absorber geometry and Dimensions

The absorber is cylindrically symmetric around the beam axis. The beampipe’s radii come from the
flange specifications in the files that define the profiles of the absWindow and the safety Window; the
beampipe’s length is extended to the same length as the safetyWindow-s on the beam axis. The
safetyDistance is between the inner faces of the two windows on the beam axis. If safetyWindow is
omitted, all references to it are changed to absWindow, and there are no volumes of safetyMaterial.

safetyWindow: absWindow:

innerR, outerR innerR, outerR safetyDistance

€ insideLength Sk Z B _ Beam axis

\ (absMaterial)

Absorber \ . \MM&ER@%)
Beampipe

Window \windowMaterial)

1/10/14 TIR G4beamline User’s Guide

41

4.6 Cornerarc geometry

The cornerarc command approximates an arc in the centerline coordinates by using three corner-s
arranged so the path length is the same as that of the arc. The figure is for angle=90 (degrees). The z
value is that of Corner 1. The path length is determined by centerRadius and angle.

Corner 3

Corner 1

centerRadius

Centerline
Coordinates

4.7 genericquad Aperture

The genericquad command can have two types of aperture: a circle and a “rounded +”. The former is
specified by setting apertureRadius nonzero; the latter is controlled by the parameters shown in the
figure. Note the rounded + aperture uses circles to approximate the poles (real magnet poles are between
hyperbola and circle, to compensate for proximity to the neighboring pole and the coil).

ironRadius ironRadius

— coilHalfwidth

poleTipRadius

apertureRadius

coilRadius

4.8 G4beamline Commands by Type

This section is just the output of the “help” command, with a little re-formatting.

The help command:
help provides interactive help.

1/10/14 TIR G4beamline User’s Guide 42

man Alias for 'help'.

Program control commands:

define defines a macro (argument-expanded set of commands).

do Do loop.

endgroup ends a group definition.

exit exit a command file.

for For loop.

gdui Accesses the Geant4 user interface

geometry Arranges to perform a geometry test.

group begins definition of a group.

if Conditional execution of command(s), and if/elseif/else/endif.
include includes a command file.

list provides interactive list of interesting internal tables.
output redirects stdout and stderr to a file

param Defines parameter values.

randomseed control pseudo random number generator seeds
showmaterial Set the colors for selected materials.

trackermode Sets mode for all trackers, manages track fitting.
tune Tune a variable used as argument to other elements.

Centerline layout commands:

corner Implement a corner in the centerline.
cornerarc Implement a cornerarc in the centerline.
start Define the initial start of centerline coordinates.

Beam definition commands:
beam Define the Beam.
cosmicraybeam Define a Cosmic-Ray muon 'beam'.
particlesource Interface to the Geant4 General Particle Source.
reference Define a reference particle.

Auxiliary definition commands:
material construct a new material.
particlecolor Set the colors for particle tracks.
trackcolor Alias for 'particlecolor'.

Beamline element definition commands:

absorber construct an absorber

boolean Construct an element from a boolean operation between
elements.

box construct a box.

coil defines a coil (part of a solenoid)

cylinder Alias for 'tubs'.

extrusion construct a solid extrusion with axis along =z

fieldexpr implements a field map, E and/or B, from expressions.

fieldmap implements a field map, E and/or B, from a file.

genericbend construct a generic bending magnet.
genericquad construct a generic quadrupole magnet.
helicaldipole construct a helicaldipole magnet.
helicalharmonic construct a helicalharmonic magnet.
idealsectorbend construct an ideal sector bending magnet.

lilens construct a simple Lithium lens.
multipole construct a generic multipole magnet.
1/10/14 TIR G4beamline User’s Guide

43

particlefilter Will kill particles from a list, or force particles to

decay.

pillbox Defines a pillbox RF cavity

polycone construct a polycone with axis along z

rfdevice Defines an rfdevice (RF cavity)

solenoid defines a solenoid (a coil and current)

sphere construct a sphere (or section of one)

tess Alias for 'tessellatedsolid'.

tessellatedsolid construct a tessellatedsolid.

torus construct a torus.

trap construct a solid trapezoid with axis along z.

tube Alias for 'tubs'.

tubs construct a tube or cylinder with axis along z.
The place command:

place places an element into the current group (or world).

Track and Event cuts:

eventcuts Implements cuts on event number via lists in files.
trackcuts Specifies per-track cuts.

Data output commands:

beamlossntuple NTuple containing particle tracks when lost.

detector Construct a Detector that generates an NTuple.

fieldntuple Generates an NTuple from B and E fields at specified points.
newparticlentuple NTuple containing particle tracks when created.

ntuple Define an NTuple containing multiple detectors.

printf prints track variables and expressions

printfield Prints E or B fields, or writes FieldMap file.

probefield Prints B and E fields at specified points.

profile write beam profile information to a file

timentuple Construct an NTuple of tracks at a specified time.
totalenergy Print total energy deposited in selected volumes.

trace Specifies tracing of tracks.

tracker Defines a tracker.

trackerplane Construct a tracker plane.

usertrackfilter Construct a usertrackfilter that filters tracks via user

code.

virtualdetector Construct a VirtualDetector that generates an NTuple.
zntuple Generate an NTuple for each of a list of Z positions.

Physics commands:

bugl021 Workaround to improve accuracy of bugl021 in E field
emfactor Multiply multiple scattering and energy loss by factors.
muminuscapturefix Fixes up the G4MuonMinusCaptureAtRest process.
physics Defines the physics processes and controls them.
reweightprocess modify the cross-section of a physics process.
setdecay Set lifetime, decay channels, and branching ratios for a

particle's decay.

spacecharge Beam-frame Green's function space charge computation
spacechargelw Lienard-Wiechert space charge computation

Other commands:

collective Monitor collective computation
demo demo command.

1/10/14 TIR G4beamline User’s Guide

44

fieldlines Display magnetic field lines.

label Display labels or markers visually in 3-D space.
movie Generate movie NTuple.

survey survey command.

test test random number seeds.

Program control Parameters:

Zcl Last centerline Z position used (updated continuously)
deltaChord Geant4 tracking parameter
deltaIntersection Geant4 tracking parameter
deltaOneStep Geant4 tracking parameter
epsMax Geant4 tracking parameter
epsMin Geant4 tracking parameter
eventTimeLimit CPU Time Limit (sec)
fieldvoxels Size of voxels for field computation (mm)
histoFile Default (Root) NTuple output filename
histoUpdate Output update interval (events)
maxStep Maximum physics step size (mm)
minStep Minimum step size (mm)
steppingFormat Format for printing steps
steppingVerbose Set nonzero to print each step
viewer Visualization driver selected (default=none)
wallClockLimit Limit on wall clock time in seconds; -1 is infinite
worldMaterial Material of the World volume
zTolerance Tolerance for Z steps (mm)
steppingFormat is a space- or comma-separated list of items:
EXT toggle extended precision (3 more digits)
TAG print a '>' (useful to grep output)
N step number
NSTEP Synonym of N
GLOBAL X,Y,Z2,T in global coords
XYZT Synonym of GLOBAL
CL X,Y,%Z2,dxdz,dydz in CL coords
CLX extended precision CL
KE kinetic energy
STEP step length
STEPLEN Synonym of STEP
VOL volume name

VOLNAME Synonym of VOL
PROCESS process name

B magnetic field

E electric field

P 3-momentum

MAT material name

ID event ID, track ID, parent ID
PART particle name

SEG centerline coord segment number
WT weight

POLAR polarization

NL <newline>

NEWLINE Synonym of NL

\n Synonym of NL

1/10/14 TIR G4beamline User’s Guide

5 G4beamline Commands (Alphabetical)

absorber

beam

1/10/14 TIR

construct an absorber

The absorber has two windows with beampipe and an absorber
material. Optionally it has an additional two safety windows with
beampipe. The WindowShape(s) are read from a file, and they
determine the thickness and length of the beampipe(s). For
geometry testing, acts like a cylinder enclosing the windows. For
placing children, acts like a cylinder inside the central
absorber.

Note that section 4.5 of the User's Guide has a dimensioned
drawing of an absorber.

Named Arguments (#=cannot be changed in place cmd) :

absWindow The name of the absorber window. #

safetyWindow The name of the safety window. #

insideLength Absorber length inside windows (mm) #

absMaterial The material of the absorber #

windowMaterial The material of the window(s) #

safetyMaterial The material inside the safety windows. #
safetyDistance Distance between absorber and safety windows (mm) #
color The color of the absorber (''=invisible)

maxStep The maximum stepsize in the element (mm)

Define the Beam.
The beam command is: beam type argl=vl
Types are: gaussian, rectangular, ellipse, ascii, and root.

Gaussian beams are randomly generated to emanate from
beamX, beamY,beamZ with the given sigmas; negative sigma means
flat with |sigmal| as halfwidth.

Rectangular beams are randomly generated to emanate from the
rectangle beamHeight by beamWidth centered at beamX,beam¥Y,beam?Z.

Ellipse beams are randomly generated on the ellipses in (X,Xp),
(Y,Yp), (T,E), with meanE determined from meanP and the sigmas
used as half-widths; tracks are generated on the ellipse with
uniform density when plotted with scales such that the ellipse is
a circle.

ASCII beams are read from a file using the format specified; the
formats supported are: BLTrackFile2. The value of polarization in
the file overwrites the value from the command line. Note the
original BLTrackFile format is supported, but the additional
fields are not present. Note also that properTime, pathLength,
initialPosition, initialT, and initialKE are for THIS simulation,
and their values in the file are ignored.

Root beams are read from a .root file using the TNtuple named

directory/name in the file. It must have the same fields as used
in BLTrackFile2 format. Note that EventIDs greater than

G4beamline User’s Guide

46

1/10/14 TIR

16,777,216 will be rounded.

When reading a file (ascii or root), beamX and beamY are added to
input tracks; if beamZ is set it will overwrite the z of the
track, but if it is not set the z of the track in the file is
kept.

All coordinates are centerline coordinates.

Multiple beam commands can be given, and they will generate
events in the order they appear in input.file.

Events are generated starting at firstEvent, until either nEvents
have been generated or lastEvent would be exceeded.

Beam tracks with momentum=0 will take one step as a stoppd
particle (as desired).

For gaussian, rectangular, and ellipse beams, the beam particle
can be given as either a particle name or its integer PDGid. Some
common beam particle names are: proton, anti proton, pi+, pi-,
mu+, mu-, e+, e-, kaon+, kaon-, kaon0O, nu e, anti nu e. See the
User's Guide for a complete list of particle names; ions can also
be specified by integer PDGid.

Ions are supported as beam particles, but only fully-ionized
ions, and not for Root input (a Root NTuple field cannot hold the
PDGid) . Ions are specified by an integer PDGid=100ZZZAAA0, where
777 is the 3-digit charge (# protons), and AAA is the 3-digit
atomic number. Note you must use physics processes appropriate
for ions.

Named Arguments:

particle Beam particle name

nEvents Number of events to process (default=1 for
generating events, default=ALL for reading files)
set to lastEvent-firstEvent+l if both are set.

firstEvent First event # to process (default is the next
sequential eventID, 1 if none)

lastEvent Last (highest) event # to process

beamX Beam location in X (mm)

beamY Beam location in Y (mm)

beamz Beam location in Z (mm)

maxR Beam maximum radius (mm)

rotation Rotation of the beam

renumber If nonzero, renumber events sequentially.

weight Weight for events, overwritten by value from input
file (1.0).

secondaryTrackID The next TrackID for secondaries (1001).
meanMomentum Gaussian Beam mean momentum (MeV/c)

meanP Synonym for meanMomentum.

P Synonym for meanMomentum.

sigmaX Gaussian Beam sigma in X (mm)
sigma¥ Gaussian Beam sigma in Y (mm)
sigmaZz Gaussian Beam sigma in Z (mm)
sigmaXp Gaussian Beam sigma in dxdz (slope)
sigma¥p Gaussian Beam sigma in dydz (slope)

G4beamline User’s Guide

47

sigmaP
sigmaT
sigmak
meanXp
meanYp
meanT
polarization
beamHeight
beamWidth
filename
file
directory
category
uid

name
format
beamXp
beamYp

Gaussian Beam sigma in P (MeV/c)
Gaussian Beam sigma in T (ns)
Elliptical Beam sigma in E (MeV)
Gaussian Beam mean in Xp (slope)
Gaussian Beam mean in Yp (slope)
Gaussian Beam mean in T (ns)
Polarization 3-vector (0,0,0)
Rectangular Beam height (mm)
Rectangular Beam width (mm)

input file name

synonym for filename.

Root-file directory of NTuple
Deprecated synonym for directory.
HistoScope uid of NTuple

Root name of NTuple.

ASCII file format (Default=BLTrackFile)
Synonym for meanXp.

Synonym for meanYp.

beamlossntuple NTuple containing particle tracks when lost.

1/10/14 TIR

All possible loss mechanisms are included.
are omitted, but Reference track(s)

Tune particle tracks
will appear if one or more

Reference particles are tracked.

The NTuple contains the usual track data:

The standard NTuple fields are:

X,yY,2 (mm)

Px, Py, Pz (MeV/c)

t (ns)

PDGid (ll=e-, 13=mu-, 22=gamma, 21l=pi+, 2212=proton, ...)
EventID (may be inexact above 16,777,215)

TrackID

ParentID (0 => primary particle)

Weight (defaults to 1.0)

The following additional fields are appended for format=Extended,

format=asciikExtended,

Bx,
Ex,

By,
Ey,

ProperTime
PathLength
Poly,
initY,
(initial time,
(MeV when track was created)

PolX,
InitX,
InitT
InitKE

Valid Formats

and format=rootExtended:
(Tesla)

Megavolts/meter)

ns)

mm)

PolZ (polarization)

InitZ (initial position,
ns)

(
(
(
mm)

(ignore case): ascii bltrackfile dummy for009

for009.dat root trackfile Extended asciiExtended rootExtended

Named Arguments

format
filename
file
require

(#=cannot be changed in place cmd):

The NTuple format (see above for 1list).

The filename for the NTuple.

Synonym for filename.

Expression which must be nonzero to include the
track (default=1l) #

G4beamline User’s Guide 48

boolean

box

1/10/14 TIR

coordinates Coordinates: global, centerline, or reference
(default=c) .

Construct an element from a boolean operation between elements.

This command takes a pair of simple elements and creates a new
element that is a boolean operation between the solids of the
initial elements. Boolean operations are: union, subtraction, and
intersection. Simple elements are those consisting of a single
solid, with no EM field: boolean, box, extrusion, polycone
sphere, tessellatedsolid, torus, trap, tubs.

The command is:

boolean op=subtraction e3 el e2 [args...]
This creates element e3 from the subtraction of e2 from el. el,
e2, and e3 can be used in further boolean operations, or can be
placed into the world.

The local coordinates of the new element are those of the first
element. If material is not specified, the material of the first
element is used.

The two input solids should intersect, and the resulting solid
should be a single piece; if not the results are undefined.

Note that for op=subtraction, the two elements should not share
any common faces; to create a hole, the subtracted (second)
element should extend at least a micron outside the first
element.

Note also that visualization of boolean solids may not work
properly, except for the RayTracer viewer. Tracking is fine.

Named Arguments:

maxStep The maximum stepsize (mm).

material The material of the boolean.

color The color of the boolean (white).

kill Set nonzero to kill every track that enters.

op The boolean operation (union, subtraction, or
intersection) .

X The x offset of element2 relative to elementl (mm).

% The y offset of element2 relative to elementl (mm).

Z The z offset of element2 relative to elementl (mm).

rotation The rotation of element2 ('').

construct a box.
This is a direct interface to G4Box.

Named Arguments:

height The height of the box (mm).

width The width of the box (mm).

length The length of the box (mm).

maxStep The maximum stepsize in the element (mm).
material The material of the box.

color The color of the box (''=invisible).

kill Set nonzero to kill every track that enters.

G4beamline User’s Guide

49

bugl021

coil

1/10/14 TIR

Workaround to improve accuracy of bugl021 in E field

When a charged particle turns around in an E field, a bug in the
Geant4 transportation process can sometimes give it a
wildly-incorrect kinetic energy. This workaround computes the
distance to turn-around, and limits the step to half that vlue
until minStep is reached; at that point the track is reflected.

Simulations in which there are no E fields, or no charged
particle ever gets below ~0.001 MeV in an E field, have no need
to apply this workaround.

Named Arguments:
minStep Minimum step in space (mm, default=0.002)

defines a coil (part of a solenoid)

A coil is a geometrical tube that can carry current when part of
a solenoid. The field is computed for a set of nSheets
infinitely-thin current sheets evenly spread radially. The
solenoid specifies the actual current. For tracking the
computation is too slow, so a field map on a grid in r and z is
computed and written to filename (defaults to coilname.dat).
While there are lots of parameters specifying the field map it is
recommended to simply accept the defaults for all but
innerRadius, outerRadius, length, material, and possibly
tolerance. The other parameters will be determined so that the
largest error is less than tolerance times the value of Bz at the
center of the coil. If mapFile is given, the file is read in
BLFieldMap format. The cache file contains the parameters, and is
a field map in a binary format; it is automatically regenerated
if any parameter changes.

Note that maxR and maxZ are by default determined to be large
enough so that the field falls below tolerance; this can be quote

large.

Named Arguments (#=cannot be changed in place cmd) :

innerRadius Inside radius of the coil (mm) #

outerRadius Outside radius of the coil (mm) #

length Length of the coil along z (mm) #

material The material of the conductor (default=Cu) #

tolerance The acceptable tolerance of the map. #

nSheets Number of sheets used in the computation #

maxR Maxmum r value for the map (automatically
determined by default). #

maxz Maxmum z value for the map (automatically
determined by default). #

dR R interval between points of the map (automatically
determined by default). #

dz Z interval between points of the map (automatically
determined by default). #

filename Filename for cache; deaults to name.dat. #

mapFile Filename for map (e.g. from TOSCA). #

exactComputation Set nonzero to use the exact computation without
any field map (0).

G4beamline User’s Guide

50

collective

corner

1/10/14 TIR

Monitor collective computation

This command computes the means and sigmas related to the time
stepping in BLRunManager (global coordinates), generating a
TimeStep NTuple. If the simulation has multiple bunches, this
NTuple combines them all (and is thus almost useless).

This command can also generate field NTuple-s at specified points
in x,y,z —-- unnamed parameters should be 'x,y,z' values for
monitoring E and B fields (global coordinates).

NOTE: This command must come AFTER other commands that compute
collective fields; otherwise stale field wvalues will be used from
the previous time step. If deltaT is set > 0.0, this command will
put the RunManager into collective mode and set its deltaT;
otherwise the previous commands should do that, and this command
won't modify deltaT.

Named Arguments:

deltaT Time step (-1 ns).

format Format of NTuples.
filenamePrefix Prefix of NTuple filenames.

Implement a corner in the centerline.

The centerline is bent by a rotation. Every track that enters the
volume also gets rotated. The z value is for the corner and the
front face of the volume (if any). If the corner is paired with a
bending magnet or other mechanism to bend the beam, no volume
should be used.

NOTE: This command is self-placing, do not use the place command;
it also affects all following placements, and it cannot be issued
inside a group. If radius=height=width=0 then no volume is
associated with the corner, and a bending magnet should be placed
nearby to bend the particles around the corner. Normally the
bending magnet is placed before the corner, and is rotated by
half the bend angle. For a sector bend, it's usually best to use
the cornerarc command rather than this one.

NOTE: all placements before this command must have z values
before the corner, and all placements after this command must
have z values after the corner. Note also that the angle is
limited to 90 degrees.

Note that the radiusCut is important to reduce or eliminate
ambiguities in the global to centerline coordinate transform. It
can also be used to 'shield' the beamline to prevent particles
from taking unusual paths around the outside of beamline
elements.

Named Arguments:

Z The centerline Z of the corner (mm).
rotation The rotation of the corner (see above).
radiusCut The radius cut for this following segment (mm

default=previous) .

G4beamline User’s Guide

51

cornerarc

radius The radius of the circular corner volume (mm).

height The height of the rectangular corner volume (mm).
width The width of the rectangular corner volume (mm).
length The length of the corner volume (mm).

maxStep The maximum stepsize in the element (mm).
material The material of the corner volume.

color The color of the corner volume (''=invisible).

Implement a cornerarc in the centerline.

The centerline is bent by a rotation. Three corners are used to
approximate an arc; the total angle and path-length are equal to
those for the arc. Should be used immediately after an
idealsectorbend or a genericbend. The z value is for the front
face of the arc.

NOTE: This command is self-placing, do not use the place command;
it also affects all following placements, and it cannot be issued
inside a group.

This command is well matched to a sector bend, but can also be
used with a normal bending magnet -- normally the magnet is
placed before the cornerarc and is rotated by half the bend
angle.

The only useful rotations are those around the centerline Z.
z, angle, and centerRadius are required parameters.

NOTE: all placements before this command must have z values
before the corner, and all placements after this command must
have z values after the corner. Note also that the angle is
limited to 90 degrees.

Note that the radiusCut is important to reduce or eliminate
ambiguities in the global to centerline coordinate transform. It
can also be used to 'shield' the beamline to prevent particles
from taking unusual paths around the outside of beamline
elements.

Named Arguments:

z The centerline Z of the cornerarc (mm).
centerRadius The radius of the centerline arc (mm).

angle The angle of bend, >0=left, <0=right (degrees).
rotation The rotation of the cornerarc (see above).
radiusCut The radius cut for this following segment (mm).

cosmicraybeam Define a Cosmic-Ray muon 'beam'.

1/10/14 TIR

The muon beam is nominally headed in the +Z direction, implying
that +Z is physically DOWN. The beam intersects a box defined by
beamWidth, beamHeight, and beamlLength, centered at X=Y=0 and
beamZ. For each event a point is selected randomly within this
box, angles theta and phi and the muon momentum are generated
according to a fit to their sea-level distributions, the track is
extended backwards to the 'celestial sphere', and that is the
initial beam position for the event. The muon flux through the

G4beamline User’s Guide

52

rectangle at Z=beamZ is used to display an estimate of the
sea-level exposure time for the run.

Named Arguments:

nEvents Number of events to process
beamz Beam location in Z (mm)
radius Radius of celestial sphere (mm)
beamHeight Rectangular Beam height (mm)
beamWidth Rectangular Beam width (mm)
beamLength Rectangular Beam length (mm)
cylinder Alias for 'tubs'.
define defines a macro (argument-expanded set of commands).

The first argument is the macro name, additional arguments become
lines in the body of the expanded macro. The macro name becomes a
command with up to 9 positional arguments. When the command is
issued, the body is expanded and executed, with these

substitutions:
SO MacroName
$1-59 Positional arguments of the command
SH# # macro expansions (for generating unique names)

NOTE: S$Sparamname is expanded in the define command, but
S$Sparamname is expanded when the macro is invoked.

demo demo command.
This demo command takes both positional and named args, and is
the prototype class for all commands. All argument values are
merely displayed. 'demo default name=value...' sets default

values.

Named Arguments:

sl a demo string argument.
s2 a demo string argument.
dl a demo double argument.
dz2 a demo double argument.

detector Construct a Detector that generates an NTuple.

A Detector generates an NTuple of tracks when they enter the
physical volume of the Detector, summing up the total energy
deposited until it leaves the volume. By default an entry in the
NTuple is generated for each event, with the track variables set
by the first track as it enters the detector. Set perTrack=1l to
generate an entry for each track.

A detector may be placed via multiple place commands (usually
with a 'rename=det#' argument to distinguish the different
placements). Each placement creates an individual NTuple.

If material is not specified, it uses Scintillator.

For a circular Detector give radius; for a rectangular one give
height and width; length is always needed.

1/10/14 TIR G4beamline User’s Guide

1/10/14 TIR

The NTuple by default uses local coordinates.

The NTuple of the detector can be included in an ntuple command
by including a pattern that matches its name in the 'detectors'
argument to the ntuple command. Note that must match the name as
placed (i.e. includes rename=), not the name given to this
command. The noSingles argument may be useful in this case to
avoid a huge NTuple of singles (an empty NTuple may be created).

Note that secondary particles created within the detector will
not get an entry until they have taken one step. They are
guaranteed to do so.

For VisibleEdep, this command knows the Birks constants for
Scintillator, POLYSTYRENE, BGO, and 1lAr. For other materials you
must supply a value, or 0.0 will be used.

The NTuple fields are:

X,yY,2z (mm)

Px, Py, Pz (MeV/c)

t (ns)

PDGid (ll=e-, 13=mu-, 22=gamma, 21l=pi+, 2212=proton...)

EventID (may be inexact above 16,777,215)

TrackID

ParentID (0 => primary particle)

Weight (defaults to 1.0)

Edep (Energy deposited, MeV)

VisibleEdep (Energy deposited, MeV, reduced by Birks effect)

Ntracks (# tracks of this event that hit the detector)
Valid formats: root, ascii (no extended formats).

Named Arguments (#=cannot be changed in place cmd) :

radius The radius of the circular Detector (mm).

innerRadius The inner radius of the circular Detector (0 mm,
solid).

height The height of the rectangular Detector (mm).

width The width of the rectangular Detector (mm).

length The length of the Detector (mm).

maxStep The maximum stepsize in the element (mm).

material The material of the Detector (Scintillator).

birks The Birks constant (0 mm/MeV, unless known)

color The color of the Detector (white, ''=invisible).

noSingles Set to 1 to omit the NTuple for singles.

format NTuple format: (see above for list).

filename filename ('' uses name to determine filename)

file alias for filename

require Expression which must be nonzero to include the

track (default=1l) #
referenceParticle Set to 1 to include the Reference Particle.

coordinates Coordinates: global, centerline, reference, or
local (default=local).

coord Alias for coordinates.

kill Set to 1 kill all tracks after entering them into
NTuple (s) .

perTrack Set to 1 generate an entry for each track (default

is per event).

G4beamline User’s Guide

54

do

emfactor

endgroup

1/10/14 TIR

Do loop.

Syntax:
do i 1 10 [1]
commands
enddo

Sets the parameter i to values 1, 2, 3, ... 10, and executes the
commands. The increment is 1 by default, and negative increments
are allowed (with limits reversed). 'do i 1 0' and 'do i 0 1 -1"
will execute no commands. After completion, i1 retains its last
value. Do-s, for-s, and multi-line if-s can be nested in any
manner.

Note: the do command will not work from standard-input or as a
command in a single-line if.

Multiply multiple scattering and energy loss by factors.

The multiple scattering and ionization energy loss processes are
not really independent; the msc factor applies to scattering in
both, and the eloss factor applies to the fluctuations of energy
loss in both. The 'mean' energy loss is not affected; note that
in some EM models, including the one used for muons, the
fluctuations only increase the loss from the 'mean', so the
average energy loss 1is affected, but only slightly.

The deltaRay parameter is the probability of keeping any given
delta-ray. The 3-momentum of each discarded delta-ray is added
back into the particle's 3-momentum, and its K.E. is recomputed.

Note that with msc=0 tracks can still be scattered if deltaRay>0.

This command applies ONLY to multiple scattering and ionization
energy loss. Other processes still apply, which can scatter and
cause a reduction of the track's energy. For muons you may wish
to disable these processes (in the physics command) : muBrems,
muPairProd, CoulombScat, Decay; similarly for other particles.

Problems may occur if any factor is > 1.0; in particular, the
position may be wrong - it might even cross a volume boundary
illegally, causing major tracking errors (code is optimized for
0.0 <= msc,eloss,DeltaRay <= 1.0).

Named Arguments:

particle Comma-separated list of particle names or patterns
(default=none) .

msc Ratio for multiple scattering (1.0).

elLoss Ratio for ionization energy loss fluctuations
(1.0) .

deltaRay Probability to keep delta-rays (1.0).

Eloss Synonym for elLoss.

eloss Synonym for elLoss.

ends a group definition.

G4beamline User’s Guide

55

eventcuts

exit

extrusion

1/10/14 TIR

The group may then be placed as any other element. If the group
was not given a length via an argument, endgroup computes the
length and adjusts the offsets of all elements in the group so
they refer to the center of the group.

Implements cuts on event number via lists in files.

The files are ASCII, with one event number per line. If the keep
file is not empty, only event numbers listed in it will be
analyzed (except those listed in the skip file). The skip file
lists event numbers that will be skipped, and event numbers
listed in both files will be skipped. When reading the files,
lines beginning with '#' are ignored; blank lines are interpreted
as event O.

Named Arguments:

keep The file containing a list of event numbers to
analyze (default is all).

skip The file containing a list of event numbers to
skip.

filename Synonym for keep.

file Synonym for keep.

exit a command file.

The exit command ceases reading the input file, and starts the
simulation immediately (ignoring the remainder of the input
file).

construct a solid extrusion with axis along z

This is a basic interface to G4ExtrudedSolid. A simple polygon in
the X-Y plane is extruded along z, with optional scales in XY at
the two ends (which generate a linear scaling along z).

The polygon must be simple (no two sides intersect, no two
vertices are equal). The vertices are listed starting from any
vertex and traversing the polygon in either direction without
lifting the pencil from the paper (Geant4 requires the traversal
to be clockwise but this element internally reverses it if
required) . For an N-sided polygon give N vertices -- a side will
be added from last to first to close the polygon; N is determined
by counting the entries in the vertices argument.

Note that while you cannot make an extrusion with a hole, you can
make such an object in two parts or by placing a daughter volume

in this one.

Note the position placed is x=0,y=0,z=0, which is centered along
z, but need not be near the center of the polygon in XY.

With scalel!=scale2 this is not really an extrusion; by making
one of them 0.001 or so, you can construct a sharp apex.

Any x or y value in vertices can be an expression using double
constants and the usual C operators and functions.

G4beamline User’s Guide

56

Named Arguments (#=cannot be changed in place cmd) :

length Length of the extrusion (mm). #

vertices List of vertices of the XY polygon (mm):
'x0,y0;x1,yl;..."; a line from last to first is
added. A 2 mm square is: '-1,-1;-1,1;1,1;1,-1" #

scalel The XY scale at the upstream (-z) end (1.0). #

scale? The XY scale at the downstream (+z) end (1.0). #

maxStep The maximum stepsize in the element (mm)

material The material of the extrusion

color The color of the extrusion (''=invisible)

kill Set nonzero to kill every track that enters.

vertexes Synonym for vertices. #

fieldexpr implements a field map, E and/or B, from expressions.

A fieldexpr element can be either a box or a cylinder; set length
and radius for cylinder, set length and width and height for a
box. Units are Tesla, MegaVolts/meter, mm, and ns. Expressions
for the field components can use {x,y,z} for a box or {z,r} for a
cylinder; the time expression can use {t}. If present, the time
expression multiples all components.

Expressions can use all C operators except ?:, and x"n is x to
the nth power (n integer). The following functions are available:
abs (), min(),max(), sqgrt(), pow(), sin(), cos(), tan(), asin(),
acos (), atan(), atan2(), sinh(), cosh(), tanh(), exp(), log(),
logl0 (), floor(), ceil(), if(). if(condition,a,b) replaces the C
(condition? a : b).

A field map is used for tracking efficiency; the number of points
in the map is increased until the largest map error divided by
the maximum field is smaller than tolerance, or 1M points is
exceeded. Similarly for the time dependence.

For time dependence: if t-timeOffset<tmin, the value at tmin is
used; if t-timeOffset>tmax, the value at tmax is used.

Note that divide by zero is reported as invalid expression. For a
Li lens you probably want to use an expression like this:

'if (r<100,500.0*r/100,500.0*100/r)"', where 100mm is the radius,
and 500T is the field at r=100mm.

Note that front=1 can be used to place this field.

Named Arguments (#=cannot be changed in place cmd) (@=Tunable):
factorB Factor for the B-field (1.0). @

factorE Factor for the E-field (1.0). @

timeOffset Time offset (ns).

Bx Expression for Bx (Tesla), use {x,vy,z}. #

By Expression for By (Tesla), use {x,vy,z}. #

Bz Expression for Bz (Tesla), use {x,vy,z} or {r,z}. #
Br Expression for Br (Tesla), use {r,z}. #

Bphi Expression for Bphi (Tesla), use {r,z}. #

Ex Expression for Ex (MV/m), use {x,y,z}. #

Ey Expression for Ey (MV/m), use {x,y,z}. #

Ez Expression for Ez (MV/m), use {x,y,z} or {r,z}. #
Er Expression for Er (MV/m), use {r,z}. #

1/10/14 TIR G4beamline User’s Guide

fieldlines

1/10/14 TIR

time Expression for time-dependence factor, use {t}. #

nX Number of grid points in x. #

nY Number of grid points in y. #

nz Number of grid points in z. #

nR Number of grid points in r. #

nT Number of grid points in t. #

tolerance Required relative accuracy (0.001). #
length Length of field map (mm). #

width Width of rectangular field map (mm). #
height Height of rectangular field map (mm). #
radius Radius of cylindrical field map (mm). #
tmin Minimum value of t (ns). #

tmax Maximum value of t (ns). #

Display magnetic field lines.

Field lines are drawn starting within a circle specified as
center and radius (global coordinates); the plane of the circle
is normal to the B field at its center. Field lines are
distributed within the circle with a density inversely
proportional to |B|. While it is attempted to keep their spacing
as uniform as possible, there are both ambiguity and randomness
involved in placing the lines within the circle. Lines are placed
within the circle from its center outward, and if |B|<minField
then no more lines are placed.

nLines is only approximate, and the actual number of lines drawn
will be within a factor of 2 of the value. Asking for fewer than
10 or more than 1000 lines is likely to be ineffective. Unnamed
parameters can contain specific x,y,z values of points to start a
field line.

Lines are drawn in both directions starting from the plane of the
circle, and each half-line stops when it again reaches that
plane. Line drawing also stops whenever |B| is less than minField
or when it leaves the world. If you are interested in field lines
far outside the magnets, you may need to add some object with a
large value of x, y, and/or z, in order to expand the world
volume. With dl=1 and subdivide=10, the accuracy of their meeting
is usually better than 0.1 mm after several tens of meters.

This command does nothing if not in visualization mode. For best
results, use the Open Inventor viewer, and give your magnets a
transparency of about 0.3 (e.g. color=1,1,1,0.3); if necessary,
use the right-button menu to set the DrawStyle/TransparencyType
to 'sorted object add'. With field lines in 3-d, you will want
the ability to zoom, rotate, and move the image interactively.

Setting exit=1 will display the system and the field lines,
without any event tracks; exiting the viewer will then exit the
program. With exit=0, field lines are drawn only at the end of
the first run.

Named Arguments:

t Time at which field lines are plotted (0 ns).
center Center of circle (x,y,z) to start lines (mm,
global) .

G4beamline User’s Guide

58

fieldmap

fieldntuple

1/10/14 TIR

radius Radius of circle to start lines (mm).
nLines Approximate number of field lines to plot (100).
dl Interval between points plotted (10 mm) .

color Color of field lines (white="1,1,1").

minField Minimum B field (0.001 tesla)

maxPoints Max # points plotted in a line (10000).

subdivide # field integration points between plotted points
(10) .

N # grid points in x and y (128).

exit Set nonzero to display field lines and exit (0).

square Set nonzero to start from square rather than circle
(0) .

Efield Set nonzero to draw E field (0); minField is in
MegaVolts/meter.

forever Set nonzero to draw lines until maxPoints is

reached or |B|<minField, not stopping at the
initial plane.

implements a field map, E and/or B, from a file.

Reads an input file in BLFieldMap format to define E and/or B
fields, optionally with time dependence. See the Users Guide for
a description of the BLFieldMap format.

Note that front=1 can NOT be used to place this field.

Named Arguments (#=cannot be changed in place cmd) (@=Tunable):
filename Filename for the Field Map. #

file Synonym for filename. #

current Current of the B-field. @
gradient Gradient of the E-field. @
timeOffset Time offset (ns).

Generates an NTuple from B and E fields at specified points.

Intended primarily for debugging. This command makes it easy to
plot fields as a function of position and time, using existing
NTuple plotting tools. Outputs x,vy,z,t,Bx,By,Bz,Ex,Ey,Ez into an
NTuple. Units are mm, ns, Tesla, and MegaVolts/meter. Runs after
the reference particle is tracked. Only global coordinates are
used.

The single positional argument is the name of the NTuple. Named
arguments {x,y,z,t} are of two forms specifying coordinate
values: x=Xmin,Xmax,dX or x=X1:X2:X3:... which generate the
obvious loops (single value is OK). Expressions can be used.
Omitted coordinates are held fixed at 0.0.

Named Arguments:

category The category of the NTuple.

format NTuple format (see above for list).

filename Name of file.

X Loop for x values: Xmin,Xmaz,dX or X1:X2:... (mm)
y Loop for y values: Ymin,Ymaz,dY or Y1l:Y2:... (mm)
z Loop for z values: Zmin,Zmaz,dZ or Z1:Z2:... (mm)
t Loop for t values: Tmin, Tmaz,dT or T1l:T2:... (ns)
exit Set nonzero to exit after generating NTuple (0).

G4beamline User’s Guide

59

for

gdui

genericbend

1/10/14 TIR

file Synonym for filename.
For loop.

Syntax:
for 1 vl v2 v3
commands
endfor

Sets the parameter i to values vl, v2, v3, ..., and executes the
commands. Values can be any strings, including numbers, except
they cannot contain an '=' (named parameter). After completion, i
retains its last value.

Do-s, for-s, and multi-line if-s can be nested in any manner.

Note: the for command will not work from standard-input or as a
command in a single-line if.

Accesses the Geant4 user interface

Each positional argument is executed as a Geant4 UI command,
according to the when parameter. No positional arguments means
open a UI session on stdout/stdin. For a given value of when, the
UI commands from all g4uil commands are executed in order.

Named Arguments:
when O=before reference, l=before beam, 2=after beam,
3=cannot be used, 4=visualization.

construct a generic bending magnet.

The field region is a box with By specified. A fringe field
computation based on the method of COSY INFINITY is included by
default, extending the field in a rectangle extending the
straight aperture along the local z. This is first order only,
and assumes the magnet is infinitely wide; the fringe field
extends outside of the magnet aperture only in a region extending
the aperture in x and y. As the fringe field is first order only,
it is slightly non-Maxwellian. It is calculated using Enge
functions.

Note that there is no field inside the 'iron'; this can result in
gross tracking errors for particles in the iron, and implies that
kill=1] is desirable.

By default, the aperture is filled with a box volume of the
fieldMaterial; this prevents placing any object inside the
aperture. With openAperture=1 no aperture volume is used, and
objects can be placed into the parent volume that are inside the
aperture.

Named Arguments (#=cannot be changed in place cmd) (@=Tunable):
fieldWidth The width of the field region (mm)

fieldHeight The height of the field region (mm)

fieldLength The length of the field region (mm)

ironWidth The width of the iron region (mm)

G4beamline User’s Guide

60

genericquad

geometry

1/10/14 TIR

ironHeight The height of the iron region (mm)

ironLength The length of the iron region (mm)

By The magnetic field (Tesla) @

maxStep The maximum stepsize in the element (mm)
fieldMaterial The material of the field region.

fieldColor The color of the field region.

ironMaterial The material of the iron region.

ironColor The color of the iron region.

kill Set nonzero to kill particles hitting the iron.
fringe Fringe field computation, set to 0 to disable, or a

comma-separated list of 6 Enge function parameters.
fringeFactor Fringe depth factor (1.0).
openAperture Set nonzero to omit the aperture volume. #

construct a generic quadrupole magnet.

The field region is a tubs with gradient specified. A positive
gradient yields a horizontally-focusing quad for positive
particles. If apertureRadius>0 the quad has a circular aperture.
For a 'rounded +' aperture using circles for the poles, set
poleTipRadius, coilRadius, coilHalfwidth. Due to visualization
bugs, in the latter case you cannot see through the aperture; it
is solid black. A fringe field computation based on the method of
COSY INFINITY is included by default, extending the field region.
This is first order only, and the fringe field extends outside of
the magnet aperture only in a cylinder extending the aperture
straight along local z. As the fringe field is first order only,
it is slightly non-Maxwellian. It is computed using Enge
functions.

Note that there is no field inside the 'iron'; this can result in
gross tracking errors for particles in the iron, and implies that
kill=1] is desirable.

If ironlLength <= 0, no iron is constructed.

Named Arguments (#=cannot be changed in place cmd) :
fieldLength The length of the field region (mm)
ironLength The length of the iron (mm)

ironRadius The outer radius of the iron (mm)
apertureRadius The radius of the aperture (mm)
poleTipRadius The inner radius of the pole tips (mm).
coilRadius The radius of the inside of the coil (mm).
coilHalfwidth The halfwidth of the coil (mm).
coilHalfWidth Synonym for coilHalfwidth.

gradient The magnetic field gradient, dBy/dx (Tesla/meter)
maxStep The maximum stepsize in the element (mm)
ironMaterial The material of the iron region.
fieldMaterial The material of the field region.

ironColor The color of the iron region.
kill Set nonzero to kill tracks hitting the iron.
fringe Fringe field computation, set to 0 to disable, or a

comma-separated list of 6 Enge function parameters.
fringeFactor Fringe depth factor (1.0).
openAperture Set nonzero to omit the aperture volume. #

Arranges to perform a geometry test.

G4beamline User’s Guide

61

group

The geometry test checks nPoints points on the surface of each
element, verifying that they are inside the parent element and
that they are not inside any sibling element. The default of 100
points is usually sufficient; 0 means omit the geometry test. The
first 20-40 points (depending on element) test 'corners', the
rest are randomly distributed on the surface. The default
tolerance is 0.002 mm.

Named Arguments:

nPoints The number of surface points to test per element
printGeometry Set nonzero to print the entire geometry.
visual Set nonzero to display the geometry test points.
tolerance Tolerance for inside/outside tests (mm).

begins definition of a group.

A group is a collection of elements that can be placed together,

preserving their relative positions. The group is a LogicalVolume
in the geant4 geometry -- this means that a group cannot overlap

any other group or object, even if the overlapping portion of the
group 1s empty. If you need to permit overlaps, consider using a

macro instead (the define command).

If the group is given a length, then children can be placed at
specific z offsets relative to the center of the group. If the
group 1s not given a length, then children can only be placed
sequentially along z, and the length will be computed by the
endgroup command. Width and height are computed from the largest
child or the argument. If radius is set to 0, the group will be a
cylinder with radius determined by the largest width or height
placed into it; i1if >0 then that is the fixed radius. If radius is
not set then a box is used.

Note: when placing objects into a group, if the rename argument
is used, it should begin with a '+' to include the group's name
in the object's name; otherwise there may be multiple objects
with the same name -- this is only a major problem for
virtualdetector-s and other output objects. The group's name is
included by default if no rename is used on the place command.

Named Arguments (#=cannot be changed in place cmd) :

length Overall group length along z (mm) #
width Overall group width (mm) #

height Overall group height (mm) #

radius Radius for a cylindrical group (mm) #
material Material of the volume outside children
color Color of the volume of the group
maxStep The maximum stepsize in the volume (mm)

helicaldipole construct a helicaldipole magnet.

1/10/14 TIR

The field region is a cylinder with a helical dipole field plus a
solenoid field. The simple model=1 provides just a sine and
cosine transverse dependence, while the maxwellian model=2 has
both dipole and quadrupole terms. Both the dipole scale bD [T]
and quadrupole scale bQ [T/m] are now at rho=0; the user must

G4beamline User’s Guide

62

determine the correct values externally.

Note that this Element generates a magnetic field only, and only
within the cylinder defined by length and radius. So it has no
solid associated with it, and is invisible.

Named Arguments:

radius The radius of the field region (mm)

model The model of field calculated(simple=1, rpj and ysd
model=2, ttominaka et al model=3), modulations in
bd, bg,bz= 4

length The length of the field region (mm)

bD The dipole magnitude at rho=0 (Tesla).

lambda Helix period along the Z axis (mm).

phi0 The phase of the XY field at the entrance (deg).

Bsolenoid The value of Bsolenoid (Tesla).

b0 The quadrupole magnitude at rho=0 (Tesla).

bs The sextupole magnitude at rho=0 (Tesla).

rr Reference radius (mm)

psi0 The offset between the dipole term and the
quadrupole term (Degrees).

ez The base electric field inside the helix channel
(GV/m) .

helicalharmonic construct a helicalharmonic magnet.

help

1/10/14 TIR

Creates a cylindrical region containing the field of a magnetic
helical harmonic of given order [n]. The field is defined by the
value of the (n-1) order derivative [b] of the vertical field
component (when the initial phase is 0) with respect to the
horizontal coordinate at the center of the helix:
b=d” (n-1)B _phi/dr”(n-1) @ [r=0 & phi-k*z+phi0=0],
where k=2*pi/lambda is the helix's wave number, [lambda] is the
length of the helix's period, and phiO is the initial phase. The
field components in the cylindrical frame are given by:
B phi=(2/(n*k))"(n-1)*b*(I[n-1] (n*k*r)-I[n+1l] (n*k*r))*
cos (n* (phi-k*z+phi0)),
B r =(2/(n*k))"(n-1)*b*(I[n-1] (n*k*r)+I[n+l] (n*k*r))*
sin (n* (phi-k*z+phi0)),
B z =-2*(2/(n*k))”"(n-1)*b*I[n] (n*k*r)*cos (n* (phi-k*z+phi0)),
where I[n] (x) 1s the modified Bessel function of the first kind
of order [n].

Note that this Element generates magnetic field only, and only
within the cylinder defined by length and radius. So it has no

solid associated with it, and is invisible.

Named Arguments:

radius The radius of the field region (mm)

length The length of the field region (mm)

n Order of helical harmonic (i.e. n=1 for dipole)

b (n-1) —order derivative of the field at the center
(T/m” (n-1))

lambda Helix period along the Z axis (mm).

prhi0 The phase of the XY field at the entrance (rad).

provides interactive help.

G4beamline User’s Guide

63

help with no arguments lists all commands. 'help command' gives
more detailed help on that command. 'help *' gives detailed help
for all commands. If the first argument is -exit the program will
exit after printing the help.

idealsectorbend construct an ideal sector bending magnet.

if

1/10/14 TIR

The field region is a sector with By specified. Unlike most
Elements, the position of the idealsectorbend is the center of
the front face of its field (aperture). angle>0 bends to the left
around Y; angle<0 bends right. The only useful rotations are
around the centerline Z. This element should normally be followed
immediately by a cornerarc. Note that -90<=angle<=90 degrees.

No fringe fields are implemented.

Note that there is no field inside the 'iron'; this can result in
gross tracking errors for particles in the iron, and implies that
kill=1] is desirable.

Named Arguments (@=Tunable):

angle Angle of bend (degrees).
fieldCenterRadius Center radius of field (mm).
fieldInnerRadius Inner radius of field (mm).
fieldOuterRadius Outer radius of field (mm).
fieldHeight Height of field (mm).
ironInnerRadius Inner radius of iron (mm).
ironOuterRadius Outer radius of iron (mm).

ironHeight Height of iron (mm).

By Magnetic field (Tesla). @

fieldMaterial Material of field.

fieldColor Color of field.

ironMaterial Material of iron.

ironColor Color of iron.

maxStep The maximum stepsize in the element (mm)

kill Set nonzero to kill particles hitting the iron.

Conditional execution of command(s), and if/elseif/else/endif.

Single-line format:
if $i==1 CMD1l CMD2

If the expression is true (nonzero), the commands are executed.
The commands usually need to be quoted.

Multi-line format:
if $i==
CMD1
elseif $i==
CMD2
else
CMD3
endif

The commands are executed in the usual way; elseif and else are

G4beamline User’s Guide

64

include

label

lilens

list

1/10/14 TIR

optional, but endif is mandatory. Any number of elseif-s and
commannds can be used. Do-s, for-s, and multi-line if-s can be
nested in any manner.

If there are spaces in the expression, it must be quoted.
includes a command file.

include requires one argument, the file to include.

Display labels or markers visually in 3-D space.

Each positional argument is X,Y,Z of the position; as many
positions as desired can be used. The same text is displayed at
each position. Empty text means use a circular marker.

The marker or label always faces the camera.

The default height of text is 12 pixels; the default diameter of
markers is 5 pixels; some viewers have rather narrow limits on
sizes.

Coordinates can be either centerline or global (the default).

Named Arguments:

text The text of the label; empty => circular marker.
color The color (1,1,1).

size The size in pixels.

coordinates Coordinates (global).

construct a simple Lithium lens.
This element consists of a current-carrying cylinder and its
field. The field exists only between the end planes of the

cylinder, out to adial infinity.

Named Arguments:

radius The radius of the current-carrying cylinder (5 mm)
length The length of the cylinder (100 mm) .

current The current in the cylinder (100000 Amp) .

material The material of the cylinder (Li).

color The color of the tube or cylinder (''=invisible)
maxStep The maximum stepsize in the element (mm).

provides interactive list of interesting internal tables.

list with no arguments lists all lists except processes. 'list
name' lists that specific one. 'list -exit name(s)' will exit
after listing. List names are:

commands all commands

materials currently known materials

physics all physics lists

particles currently known particles

processes currently known physics processes ***

NOTE: the particles and processes lists are not populated until
the physics list is selected (via the physics command). Different
physics lists use different processes and particles.

G4beamline User’s Guide 65

man

material

1/10/14 TIR

***NOTE: listing processes will prevent any simulating, as will a
non-empty particle list.

Named Arguments:
particle Comma-separated list of particles for which details
will be printed

Alias for 'help'.

construct a new material.

This is an interface to G4Material. This command is rarely
required, because elements and most common materials are
available via the NIST database. Any material available from the
NIST database can simply be used -- if it is unknown then it will
be automatically defined from the database. Uncommon materials or
nonstandard densities must be defined with this command.

The first argument to this command is the material name, which is
always required; density is also required. The command to define
an element (e.g. with non-standard density) is:

material H2 Z=1 A=1.01 density=0.000090
A mixture or compound is a combination of known materials and/or
elements; the command is:

material water H,0.1119 0,0.8881 density=1.0
The numbers following the element names are their mass fractions
(note that WATER is available from the NIST db). Either type of
command can optionally have: pressure, temperature, state.

With no arguments, this command prints the current material
table. Note that 'G4 ' is prepended to the names of most
materials that are obtained from the NIST database; 'G4 Al' and
'Al' refer to the same material (unless one was previously
defined using this command) .

The following three arguments permit track filtering for all
volumes made of this material:

keep A comma-separated list of particle names to keep.

kill A comma-separated list of particle names to kill.

require An expression that must evaluate nonzero or the track
is killed.

The require expression uses global coordinates and can use the
followng track variables:
X,v,2,Px,Py,Pz,t,PDGid, EventID, TrackID, ParentID,wt

The following materials are known from the NIST database, and
will be automatically created on first use:

H He Li Be B C N O F Ne Na Mg A1 Si P S Cl Ar K Ca Sc Ti V Cr Mn
Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag
Cd In Sn Sb Te I Xe Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm
Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Th Pa
U Np Pu Am Cm Bk Cf A-150 TISSUE ACETONE ACETYLENE ADENINE
ADIPOSE TISSUE ICRP AIR ALANINE ALUMINUM OXIDE AMBER AMMONIA
ANILINE ANTHRACENE B-100 BONE BAKELITE BARIUM FLUORIDE

G4beamline User’s Guide

66

1/10/14 TIR

BARIUM SULFATE BENZENE BERYLLIUM OXIDE BGO BLOOD ICRP

BONE COMPACT ICRU BONE CORTICAL ICRP BORON CARBIDE BORON_ OXIDE
BRAIN ICRP BUTANE N-BUTYL ALCOHOL C-552 CADMIUM TELLURIDE
CADMIUM TUNGSTATE CALCIUM CARBONATE CALCIUM FLUORIDE

CALCIUM OXIDE CALCIUM SULFATE CALCIUM TUNGSTATE CARBON DIOXIDE
CARBON TETRACHLORIDE CELLULOSE CELLOPHANE CELLULOSE BUTYRATE
CELLULOSE NITRATE CERIC SULFATE CESIUM FLUORIDE CESIUM IODIDE
CHLOROBENZENE CHLOROFORM CONCRETE CYCLOHEXANE 1,2-DICHLOROBENZENE
DICHLORODIETHYL ETHER 1,2-DICHLOROETHANE DIETHYL ETHER

N, N-DIMETHYL FORMAMIDE DIMETHYL SULFOXIDE ETHANE ETHYL ALCOHOL
ETHYL CELLULOSE ETHYLENE EYE LENS ICRP FERRIC OXIDE FERROBORIDE
FERROUS OXIDE FERROUS SULFATE FREON-12 FREON-12B2 FREON-13
FREON-13B1 FREON-13I1 GADOLINIUM OXYSULFIDE GALLIUM ARSENIDE

GEL PHOTO EMULSION Pyrex Glass GLASS LEAD GLASS PLATE GLUCOSE
GLUTAMINE GLYCEROL GUANINE GYPSUM N-HEPTANE N-HEXANE KAPTON
LANTHANUM OXYBROMIDE LANTHANUM OXYSULFIDE LEAD OXIDE

LITHIUM AMIDE LITHIUM CARBONATE LITHIUM FLUORIDE LITHIUM HYDRIDE
LITHIUM IODIDE LITHIUM OXIDE LITHIUM TETRABORATE LUNG ICRP M3 WAX
MAGNESTIUM CARBONATE MAGNESIUM FLUORIDE MAGNESIUM OXIDE

MAGNESTIUM TETRABORATE MERCURIC TODIDE METHANE METHANOL MIX D WAX
MS20 TISSUE MUSCLE SKELETAL ICRP MUSCLE STRIATED ICRU
MUSCLE WITH SUCROSE MUSCLE WITHOUT SUCROSE NAPHTHALENE
NITROBENZENE NITROUS OXIDE NYLON-8062 NYLON-6-6 NYLON-6-10
NYLON-11 RILSAN OCTANE PARAFFIN N-PENTANE PHOTO EMULSION
PLASTIC SC VINYLTOLUENE PLUTONIUM DIOXIDE POLYACRYLONITRILE
POLYCARBONATE POLYCHLOROSTYRENE POLYETHYLENE MYLAR PLEXIGLASS
POLYOXYMETHYLENE POLYPROPYLENE POLYSTYRENE TEFLON
POLYTRIFLUOROCHLOROETHYLENE POLYVINYL ACETATE POLYVINYL ALCOHOL
POLYVINYL BUTYRAL POLYVINYL CHLORIDE POLYVINYLIDENE CHLORIDE
POLYVINYLIDENE FLUORIDE POLYVINYL PYRROLIDONE POTASSIUM IODIDE
POTASSIUM OXIDE PROPANE 1PROPANE N-PROPYL ALCOHOL PYRIDINE
RUBBER BUTYL RUBBER NATURAL RUBBER NEOPRENE SILICON DIOXIDE
SILVER BROMIDE SILVER CHLORIDE SILVER HALIDES SILVER IODIDE

SKIN ICRP SODIUM CARBONATE SODIUM IODIDE SODIUM MONOXIDE

SODIUM NITRATE STILBENE SUCROSE TERPHENYL TESTIS ICRP
TETRACHLOROETHYLENE THALLIUM CHLORIDE TISSUE SOFT ICRP
TISSUE SOFT ICRU-4 TISSUE-METHANE TISSUE-PROPANE TITANIUM DIOXIDE
TOLUENE TRICHLOROETHYLENE TRIETHYL PHOSPHATE

TUNGSTEN HEXAFLUORIDE URANIUM DICARBIDE URANIUM MONOCARBIDE
URANIUM OXIDE UREA VALINE VITON WATER WATER VAPOR XYLENE GRAPHITE
1H2 1N2 102 1Ar 1lKr 1Xe PbWO4 Galactic GRAPHITE POROUS LUCITE
BRASS BRONZE STAINLESS-STEEL CR39 OCTADECANOL KEVLAR DACRON
NEOPRENE CYTOSINE THYMINE URACIL DNA ADENINE DNA GUANINE

DNA CYTOSINE DNA THYMINE DNA URACIL DNA ADENOSINE DNA GUANOSINE
DNA CYTIDINE DNA URIDINE DNA METHYLURIDINE DNA MONOPHOSPHATE
DNA A DNA G DNA C DNA U DNA MU Stainless304 Stainless316 lHe

Aliases: LHe=1lHe Air=AIR, H20=WATER, Vacuum=Galactic, LH2=1H2,
Scintillator=POLYSTYRENE

Named Arguments:

a Effective Atomic Weight of the material (g/mole)
z Effective Atomic Number of the material

density Density of the material (gm/cm”3)

pressure Pressure of the material (Atm)

temperature Temperature of the material (K)

state State of the material (g,l, or s)

G4beamline User’s Guide

67

A Synonym for a (g/mole)

Z Synonym for z

keep A comma-separated list of particle names to keep
(all others are killed; ignored if empty).

kill A comma-separated list of particle names to kill.

require An expression that must evaluate nonzero or the

track is killed.
Generate movie NTuple.

This command outputs a set of NTuples suitable for generating a

Coordinates: global, centerline, or reference
(default=r).

movie
movie.
Named Arguments:
coordinates
multipole

construct a generic multipole magnet.

Multipole magnetic fields from
implemented with a cylindrical
surrounding iron (ironLength=0
fields with positive strengths

dipole through dodecapole are
field region and optional

or ironRadius=0 omits it). All
are oriented so in the X-Z plane

for X>0 (beam left) the field is purely By. Negative strengths
are allowed and reverse the field. The fringe field computation

is not implemented.

Named Arguments (#=cannot be changed in place cmd) :

fieldLength
ironLength
ironRadius

The length of the field region (mm)
The length of the iron (mm)
The outer radius of the iron (mm)

apertureRadius The radius of the aperture (mm)

ironMaterial
fieldMaterial
dipole
quadrupole
sextupole
octopole
decapole
dodecapole
ironColor
kill

maxStep
fringe
fringeFactor
openAperture

muminuscapturefix Fixes up

The material of the iron region.

The material of the field region.

Strength of dipole (Tesla)

Strength of quadrupole (T/m)

Strength of sextupole (T/m"2)

Strength of octopole (T/m"3)

Strength of decapole (T/m"4)

Strength of dodecapole (T/m"5)

The color of the iron region.

Set nonzero to kill tracks hitting the iron.
The maximum stepsize in the element (mm)
Fringe field computation, set to 0 to disable
Fringe depth factor (1.0).

Set nonzero to omit the aperture volume. #

the G4MuonMinusCaptureAtRest process.

This class adds extra neutrons to mu- capture. The neutrons are

1/10/14 TIR

added with a Poisson distribution having a mean of

neutronMeanNumber, and with an exponential distribution in

kinetic energy:
(1/neutronMeanEnergy) *exp (-KE/neutronMeanEnergy)

As the muonic atom cascades to its ground state it forgets the

incident mu- direction, so the extra neutrons are generated

isotropically in the 1lab.

G4beamline User’s Guide

68

The extra neutrons are added only to those captures that are
hadronic (i.e. not decay in orbit). The value of
neutronMeanNumber should reflect this.

The default values correspond to Aluminum.

Named Arguments:

neutronMeanNumber Mean mumber of extra neutrons per nuclear
capture (2.5).

neutronMeanknergy Mean energy of neutron spectrum (MeV)

newparticlentuple NTuple containing particle tracks when created.

ntuple

1/10/14 TIR

Note that initial beam particles are included, unless require is
set to 'ParentID>0'.

The standard NTuple fields are:
X,Y,z (mm)
Px,Py,Pz (MeV/c)
t (ns)
PDGid (ll=e-, 13=mu-, 22=gamma, 21l=pi+, 2212=proton, ...)
EventID (may be inexact above 16,777,215)
TrackID
ParentID (0 => primary particle)
Weight (defaults to 1.0)

The following additional fields are appended for format=Extended,
format=asciikExtended, and format=rootExtended:
Bx, By, Bz (Tesla)

Ex, Ey, Ez (Megavolts/meter)
ProperTime (ns)
PathLength (mm)

PolX, PolY, PolZ (polarization)

InitX, initY, InitZ (initial position, mm)
InitT (initial time, ns)

InitKE (MeV when track was created)

Valid Formats (ignore case): ascii bltrackfile dummy for009
for009.dat root trackfile Extended asciiExtended rootExtended

Named Arguments (#=cannot be changed in place cmd) :

format The NTuple format (see above for list).

filename The filename for the NTuple.

file Synonym for filename.

require Expression which must be nonzero to include the
track (default=1) #

coordinates Coordinates: global, centerline, or reference
(default=c) .

kill Set nonzero to kill tracks after entering into

NTuple; does not kill track if require fails (0).
Define an NTuple containing multiple detectors.
An ntuple holds the data from multiple detectors in a single

NTuple, with one row (entry) per event or per track. This permits
the generation of plots that compare different detectors. Up to

G4beamline User’s Guide 69

1/10/14 TIR

64 detectors can be used. While 'detector' is used in this
description, any existing NTuple can be used, generated by any
command, such as: virtualdetector, zntuple, beamlossntuple,
timentuple, and newparticlentuple.

There are two ways the detectors can be combined: the default
method is to construct a new NTuple that combines the fields of
all the detectors, each prepended with the detector name. If
union=1 is given, then all detectors must have the same list of
fields, and that list is used for this NTuple; any hit in any
detector is simply copied to this NTuple -- this permits multiple
detectors to be combined into a single NTuple (you may want
noSingles=1 for the detectors). With union=1, the 'required',
'veto' and 'minHit' arguments cannot be used.

By default, an entry in this ntuple is made for each event
satisfying the require, veto, and minHit conditions; if
perTrack=1 then an entry is made for each track that satisfies
the require, veto, and minHit conditions. Any hit in any detector
matching the patterns in veto will prevent the event/track from
being entered into the ntuple.

If multiple hits occur in a given detector during the event or
track, only the first one is kept in this ntuple. Detectors are
specified by patterns identical to UNIX file-matching, so '*Det*'
matches any detector with 'Det' anywhere in its name, etc. The
'required' argument permits events to be omitted unless all of
the matching detectors were hit at least once in the event or
track. The patterns in 'required' are applied only to detectors
in the ntuple, so a simple '*' only matches detectors named in
the 'detectors' argument.

If union is nonzero, the hits in each detector are entered into
this NTuple as they occur; each hit in any detector is included
as a row in this NTuple. All detectors must have the same fields,
which are used for this NTuple.

NOTE: the name of a detector is by default the concatenation of
its ancestors' names before its own (except World), unless
rename=NAME was used in its place command. The patterns are
applied to the names of the virtualdetectors as they were placed
(including rename), not the bare name of the virtualdetector
command. If 'rename=det#' was used when placing the
virtualdetector-s, you probably want a * to match the #, or list
them individually (detl,det2,det3...).

NOTE: This command does not work correctly in collective tracking
mode, unless union=1l.

Valid Formats (ignore case): ascii bltrackfile dummy for009
for009.dat root trackfile

Named Arguments:

category The category of the NTuple.
detectors A comma-separated list of detector patterns.
required A comma-separated list of required detector

patterns (default=*).

G4beamline User’s Guide 70

output

param

1/10/14 TIR

veto A comma-separated list of detector patterns, any
hit cancels entry into the NTuple (default='").

format NTuple format (see above for list).

filename Name of file.

minHit Minimum number of detectors hit (default 0).

perTrack Nonzero for an entry per track; 0 for an entry per
event (default 0).

union Set nonzero to perform a union of the detectors,
rather than combining them.

require Synonym for required.

minHits Synonym for minHit.

file Synonym for filename.

redirects stdout and stderr to a file

output requires one argument, the new output file. Any output
generated before this command will not appear in the file, so
this command should come at the start of the input.file, preceded
only by setting parameters. After the redirection, it will
re-print the G4beamline version and the current parameter values
to the file. The most common usage is to redirect output to a
file named like the .root file, when that is determined by
parameter values:

param -unset paraml=1.0 param2=3.0

param histofile=S$paraml, $param2

output S$histofile.out

Defines parameter values.

Parameters are named strings used to parameterize the input file;
a few are used for program control. Parameters are set by the
param commend, and on the command line (all program arguments
after the first are interpreted as name=value).

'param name=value ...' defines parameters. If no arguments are
present, all parameters are displayed. If the first argument is
'-unset', this command will not overwrite parameters that are
already set (e.g. from the command line - this permits the
input.file to set defaults that can be overridden on the command
line).

Parameters are expanded only in the arguments of commands: 'cmd
argname=$paramname [...]'; real-valued expressions for arguments
can use $paramname as a value, as long as paramname contains a
valid real expression.

Parameters are most useful for setting global things like viewer
and histoFile, or as parameters used in the input.file.

When a parameter is used, if it has not been defined, it will be
defined from the environment if possible; if it is not defined in
the environment then this generates an error message.

The values of parameters are strings, but if the value of a
parameter is set to a valid real expression including at least
one operator {+-*/"<>=()!~&%|?}, the parameter value will be set
to the numerical value of the expression to 8 significant digits.

G4beamline User’s Guide

71

NOTE:

pre-defined Program control parameters

(listed below) are

defined before the command-line and are not affected by -unset.

Program control Parameters:

Zcl Last centerline Z position used (updated continuously)
deltaChord Geant4 tracking parameter

deltalntersection Geant4 tracking parameter

deltaOneStep Geant4 tracking parameter

epsMax Geant4 tracking parameter

epsMin Geant4 tracking parameter

eventTimeLimit CPU Time Limit (sec)

fieldVoxels Size of voxels for field computation (mm)

histoFile Default (Root) NTuple output filename

histoUpdate Output update interval (events)

maxStep Maximum physics step size (mm)

minStep Minimum step size (mm)

steppingFormat Format for printing steps

steppingVerbose Set nonzero to print each step

viewer Visualization driver selected (default=none)
wallClockLimit Limit on wall clock time in seconds; -1 is infinite
worldMaterial Material of the World volume

zTolerance Tolerance for Z steps (mm)

steppingFormat is a space- or comma-separated list of items:

EXT
TAG print a '>'
N step number

toggle extended precision
(useful to grep output)

(3 more digits)

NSTEP Synonym of N

GLOBAL X,Y,Z2,T in global coords
XYZT Synonym of GLOBAL

CL X,Y,Z,dxdz,dydz in CL coords
CLX extended precision CL

KE kinetic energy

STEP step length

STEPLEN Synonym of STEP

VOL volume name

VOLNAME Synonym of VOL

PROCESS process name

B magnetic field

E electric field

P 3-momentum

MAT material name

ID event ID, track ID, parent ID
PART particle name

SEG centerline coord segment number
WT weight

POLAR polarization

NL <newline>

NEWLINE Synonym of NL

\n Synonym of NL

particlecolor Set the colors for particle tracks.

Arguments are of the form
standard name of a particle,

1/10/14 TIR

'name=1,1,0",

where name is the
and 1,1,0 is the R,G,B value desired

G4beamline User’s Guide

72

for its color ('' for invisible) The special names plus, minus,
and neutral will set colors for unnamed particles of each charge.
The name reference will apply to the reference track (defaults to
invisible).

particlefilter Will kill particles from a list, or force particles to decay.

A particlefilter will force the decay of certain particles when
they enter the physical volume of the element. The list of
affected particles is in the 'decay' argument, and the normal
Decay process 1is disabled for them. In addition, the 'kill'
argument is a list of particles to kill when they enter the
element, and the 'keep' argument will kill all particles not
named, if it is not empty.

require is an expression invloving track parameters that will
kill the track if it evaluates to zero (use a comparison
operator). The variables available are:

x,v,2z,t,Px,Py,Pz,Ptot, PDGid, EventID, TrackID, ParentID
Units are mm, ns, MeV/c.

If nWait > 1, particles will not be killed until they hit this
element nwait times; this can be used to limit the number of
revolutions around a ring. Decays are unaffected by nWait.
referenceWait does the same for the reference particle The
element can be either a cylinder or a box: set length and radius,
or set length and width and height.

Named Arguments (#=cannot be changed in place cmd) :

radius The radius of the cylindrical particlefilter (mm).

innerRadius The inner radius of the cylindrical particlefilter
(0 mm, solid).

height The height of the rectangular particlefilter (mm).

width The width of the rectangular particlefilter (mm).

length The length of the particlefilter (mm).

maxStep The maximum stepsize in the element (mm).

material The material (default=parent's).

color The color of the particlefilter (white).

decay A comma-separated list of particle names to decay.
#

kill A comma-separated list of particle names to kill. #

keep A comma-separated list of particle names to keep. #

nWait Intersection # to do the kill (default = 1)

referenceWait Intersection # for reference (default = 1)

require Expression which will kill the track if zero. #

steppingVerbose Nonzero to display track kills.

decays Synonym for decay. #

particlesource Interface to the Geant4 General Particle Source.

1/10/14 TIR

The Geant4 General Particle Source (GPS) is a very flexible and
general way to generate events. It is controlled by Geant4
commands which should follow this command in the input.file. If
you have a macro, you can include it using either the G4beamline
'include' command or the Geant4 command '/control/execute'. Note
that G4beamline only recognizes Geant4 commands when the '/' is
in column 1.

G4beamline User’s Guide

73

physics

1/10/14 TIR

Due to the design of the GPS, only one particlesource command can
be used, but the GPS permits multiple sources to be combined.

NOTE: the Geant4 General Particle Source inherently uses global
coordinates, so this is most useful at the beginning of a
beamline when global=centerline. Note also that it is very easy
to generate a beam headed in the -z direction (this command will
rotate to the +z direction: '/gps/ang/rotl -1 0 0').

To use this, see the User Manual for the GPS at
http://reat.space.qginetiqg.com/gps

Named Arguments:

nEvents Number of events to process (default=1l), set to
lastEvent-firstEvent+l if both are set.

firstEvent First event # to process (default is the next
sequential eventID, 1 if none)

lastEvent Last (highest) event # to process

secondaryTrackID The next TrackID for secondaries (1001).
Defines the physics processes and controls them.

Exactly one physics command must be present. This command
implements the geant4 physics lists of physics processes. The
command is 'physics QGSP' for the QGSP list, and similarly for
the other lists. With no argument it prints the available physics
lists. 'default' will select a standard list, currently

FTFP BERT.

Note that stochastic processes are always disabled while tracking
the tune and reference particles. The only non-stochastic
processes are Transportation and ionization energy loss (with
fluctuations disabled).

For muon beam studies you may want to disable the Decay process.

spinTracking=1 will enable tracking the spins of e+, e-, mu+, and
mu- (only), including pion decays to polarized muons, polarized
muon decays, and the force from the particle's magnetic moment.
The rare pion decay to e nu is included, but the e are
unpolarized. The muon decays give the correct distribution for
the electron, but only approximate distributions for the
neutrinos, and all are unpolarized.

NOTE: this command defines the particles used throughout the
simulation, so this command must come before others that use

particle names.

NOTE: the rare decay mode for pi+/pi- to e nu is always added,
with branching ratio 1.230E-4.

The default all-around physics list for HEP is called
'FTFP_BERT'.

NOTE: At present there is a bug in Geant4 tracking and the
magnetic moment is not used. For >~ 1 GeV muons and practical

G4beamline User’s Guide

74

fields this is a very small error.

Named Arguments:

disable Comma-separated list of processes to disable (e.g.
'Decay,msc') .

inactivate Synonym of disable.

deactivate Synonym of disable.

doStochastics Set to zero to disable all stochastic processes.

fluct Set to zero to disable ionization energy loss
fluctuations.

minRangeCut Minimum range cut for particle production (1 mm)

list Nonzero to list the processes (later in output).

gammaToMuPair Nonzero to add gamma->mu+mu- (0).

spinTracking Nonzero to track particle spins (0).

synchrotronRadiation Nonzero to add synchrotron radiation to the
physics list for e- and e+.

synchrotronRadiationMuon Nonzero to add synchrotron radiation to
the physics list for mu- and mu+ NOTE: This is
experimental, and may not work correctly.

maxTime Maximum time for tracking (1000000ns) .

————— PHYSICS LISTS -----

Further guidance in selecting physics lists is available at:

http://geantd.web.cern.ch/geant4/support/physicsLists/referencePL/index.shtml

1/10/14 TIR

The default all-around physics list for HEP is called 'FTFP BERT'.

LHEP uses exclusively parameterized modeling.

FTF lists use the FRITIOF description of string excitation
and fragmentation.

QGSP lists use the quark gluon string model

QGSC are as QGSP except applying CHIPS modeling for the nuclear
de-excitation.

_BERT uses Geant4 Bertini cascade below ~ 10 GeV.

_BIC uses Geant4 Binary cascade below ~ 10 GeV.

_EMV suffix indicates a faster but less accurate EM modeling.

_EMX suffix indicates the low-energy EM processes.

_HP suffix uses the data driven high precision neutron package
(thermal to 20 MeV).

_NQE suffix indicates a list for comparison with earlier release.

List of available physics lists:

CHIPS No synopsis available.

FTFP BERT For calorimetry. The FTF model is based on the FRITIOF
description of string excitation and fragmentation. Uses
Geant4 Bertini cascade for primary protons, neutrons,
pions and Kaons below ~10GeV.

FTFP _BERT TRV A variant of FTFP BERT where the Geant4 Bertini
cascade 1s only used for particles below ~5.5 GeV.

FTFP_BERT HP No synopsis available.

FTF BIC No synopsis available.

LBE For low background experiments (e.g. underground)

LHEP For calorimetry -- is the fastest, when it comes to CPU.
It uses the LEP and HEP parametrized models for inelastic
scattering. The modeling parametrizes the final states
individual inelastic reactions, so you will not see

G4beamline User’s Guide

75

pillbox

1/10/14 TIR

resonances, and the detailed secondary angular
distributions for 0(100MeV) reactions may not be described
perfectly. The average quantities will be well described.

QBBC No synopsis available.

QGSC_BERT For calorimetry and high energy physics trackers -- is
as QGSP for the initial reaction, but uses chiral
invariant phase-space decay (multi-quasmon fragmentation)
to model the behavior of the system's fragmentation. Uses
Geant4 Bertini cascade for nucleon and pion induced

reactions.
QOGSP For calorimetry and high energy physics trackers and
high-energy and medium-energy production targets -- uses

theory driven modeling for the reactions of energetic
pions, kaons, and nucleons. It employs quark gluon string
model for the 'punch-through' interactions of the
projectile with a nucleus, the string excitation
cross-sections being calculated in quasi-eikonal
approximation. A pre-equilibrium decay model with an
extensive evaporation phase to model the behavior of the
nucleus 'after the punch'. It uses current best pion
cross-section.

QGSP_BERT Like QGSP, but using Geant4 Bertini cascade for primary
protons, neutrons, pions and Kaons below ~10GeV. In
comparison to experimental data we find improved agreement
to data compared to QGSP which uses the low energy
parameterised (LEP) model for all particles at these
energies. The Bertini model produces more secondary
neutrons and protons than the LEP model, yielding a better
agreement to experimental data.

QGSP_BERT CHIPS No synopsis available.

QGSP_BERT HP Like QGSP_BERT but with HP modeling for neutrons.

QGSP_BIC Like QGSP, but using Geant4 Binary cascade for primary
protons and neutrons with energies below ~10GeV, thus
replacing the use of the LEP model for protons and
neutrons In comparison to teh LEP model, Binary cascade
better describes production of secondary particles
produced in interactions of protons and neutrons with
nuclei.

QGSP_BIC HP Like QGSP BIC but with HP modeling for neutrons.

QGSP_FTFP BERT No synopsis available.

QGS_BIC No synopsis available.

QGSP_INCLXX No synopsis available.

Shielding No synopsis available.

Defines a pillbox RF cavity

A Pillbox RF cavity is the basic RF element used to construct a
linac. The phaseAcc parameter sets the phase of the tune particle
at the center of the cavity, and the timing offset of the cavity
is determined from that the first time that the Tune particle is
tracked through the cavity. Zero degrees is the rising
zero-crossing of the Ez field. If timeOffset is specified, it is
used rather than setting it from the Tune particle.

The Pipe, walls, and collars are always made of copper. Pipe,

wall, collar, winl, and win2 can be omitted by setting their
thickness to 0. Common usage is to set the collar values so by

G4beamline User’s Guide

76

place

1/10/14 TIR

placing multiple pillboxes sequentially the collars form a beam
pipe between them.

Note that section 4.4 of the User's Guide has a dimensioned
drawing of a pillbox.

Named Arguments (#=cannot be changed in place cmd) (@=Tunable):
maxGradient The peak gradient of the cavity (MV/m) @

color The color of the cavity

frequency The frequency of the cavity (GHz) #

innerLength The inside length of the cavity (mm) #
innerRadius The inside radius of the cavity (mm) #

pipeThick The thickness of the pipe wall (mm) #

wallThick The thickness of the cavity walls (mm) #
irisRadius The radius of the iris (mm) #

collarRadialThick The radial thickness of the collar (mm) #

collarThick The thickness of the collar along z(mm) #

winlThick The thickness of the central portion of the
windows; zero for no window (mm) #

winlOuterRadius The radius of the central portion of the windows

(mm) #

win2Thick The thickness of the outer portion of the windows;
zero for no window (mm) #

winMat The material of the windows

phaseAcc The reference phase of the cavity (degrees)

skinDepth The skin depth (mm) #

timingTolerance Tolerance for timing tuning (ns)

maxStep The maximum stepsize in the element (mm).

cavityMaterial Material of cavity volume (Vacuum).

timeOffset Time offset for cavity (default: tuned by tune
particle) (ns).

timeIncrement Increment to timeOffset, applied AFTER tuning.
(ns) .

fieldMapFile Filename for BLFieldMap (pillbox if null). #

kill Set nonzero to kill tracks that hit the pipe,

walls, or collars (0).
places an element into the current group (or world).

Every element can be placed multiple times into the beamline. For
most elements the geometrical centerpoint is placed; for polycone
the local x=y=z=0 point is placed. If front is nonzero then the
front of the element is placed (and any rotation is applied at
the front). If z is specified, then the element is placed at that
z position relative to the center of the enclosing group. If z is
not specified, then the element is placed immediately downstream
(higher z) of the previous element in the group, or at the
upstream edge of the group if this is the first element in the
group.

The 'rename' argument can be used to change the name of the
element (applies to traces and other uses of object names, such
as the NTuple name of a virtualdetector). When placing into a
group or other object, the rename argument should normally begin
with '"+' to include the parent's name; otherwise multiple
placements of the parent will generate multiple objects with
identical names -- that should be avoided for output objects like

G4beamline User’s Guide

polycone

1/10/14 TIR

virtualdetector. Without a rename argument, the parent's name is
included automatically.

When multiple copies are placed, z refers to the first, and the
rest are placed sequentially along z. When placing an element
into the World group, Centerline coordinates are used unless
coordinates=global is present. When centerline coordinates are
used, the parameter 'Zcl' is set to the highest Z value used;
this is normally the Z wvalue for the front of the next element
when placed sequentially (i.e. with no z value given).

Rotations: The rotation parameter can be used to rotate this
element relative to the enclosing group. The object is rotated,
not the axes. Rotations are specified as a comma-separated list
of axes and angles (in degrees): rotate=790,X45 rotates first by
90 degrees around Z and then by 45 degrees around X. The axes are
the local X,Y,Z coordinate axes of the enclosing group
(centerline or global coordinate axes for the World group):;
groups can be rotated when placed, and are rotated as a rigid
unit (including children).

If parent=name is present, then the name must be an element that
accepts children, and it is used as the enclosing group; in this
case the size of the group is implied by the size of the parent
element, and z must be given (defaults to 0). Note that a given
element cannot be the parent of any other element once it has
been placed, so you must place children into their parent before
placing their parent.

If the special element 'OFFSET' is given, x, y, and z specify
offsets for every following place command into the current group

(incl. World), that gives a z position.

Named Arguments:

b4 Z position of element's center relative to the
center of the enclosing group (mm).

X X position of element's center [default=0] (mm)

y Y position of element's center [default=0] (mm)

parent Parent element name (must accept children).

rename Name to use for this placement; '#' will be

substituted by the number of placements. If the
value begins with '+', it is replaced with the
parent's name.

copies Number of copies (placed sequentially along z).
front Nonzero to specify z for the front, not the center.
rotation Rotation of this object.

coordinates Coordinates: global or centerline (default=c).

construct a polycone with axis along z

This is a direct interface to G4Polycone. For a solid polycone,
omit innerRadius and it will be filled with zeroes. The number of
entries in z, innerRadius, and outerRadius must be the same. Note
that a polycone is placed at its z=0,r=0 point, which need not be
its geometric center.

Named Arguments (#=cannot be changed in place cmd) :

G4beamline User’s Guide 78

printf

printfield

1/10/14 TIR

innerRadius Comma-separated list of inner radii (mm) #
outerRadius Comma-separated list of outer radii (mm) #

z Comma-separated list of z positions (mm) #
initialPhi The initial Phi value (deg; 0 for all)
finalPhi The final Phi value (deg; 360 for all)
maxStep The maximum stepsize in the element (mm)
material The material of the polycone

color The color of the polycone (''=invisible)
kill Set nonzero to kill every track that enters.
prints track variables and expressions

This is an interface to the C printf () function. The first

positional argument is the format, and the following positional
arguments are double expressions printed with the $ fields in the
format. Up to 16 expressions can be printed. The print is
performed only if the 'required' expression is nonzero, as each
track reaches one of the Z positions in the 'z' argument
(centerline coordinates). Multiple printf commands with the same
'file' will be combined into the file as tracks reach any of
their Z positions. More than 16 expressions can be broken into
multiple printf-s with noNewline=1 for all but the last.

The following variables can be used in expressions:
xX,v¥,2,t,Px,Py, Pz
PDGid, EventID, TrackID, ParentId,Weight
Bx,By,Bz, Ex,Ey,Ez
tune (nonzero only for the Tune particle)
reference (nonzero only for the Reference particle)
beam (nonzero for any Beam particle)

Each value in z and zloop can be an expression using double
constants and the usual C operators and functions.

Example:
printf z=0 'Momentum is %.3f GeV/c' sqrt (Px*Px+Py*Py+Pz*Pz) /1000

NOTE: if format begins 'Ptot=...' the parsing will think it is a
named argument; put a space before the '=' to avoid that error.

Named Arguments:

b4 Comma-separated list of Z positions for printing
(mm)

zloop Loop in z, first:last:incr (mm)

require logical expression for cutting (default=true)

file Output filename (default="-" => stdout)

filename Synonym for file

noNewline set nonzero to omit final newline.

coordinates Coordinates: global, centerline, or reference
(default=c) .

Prints E or B fields, or writes FieldMap file.

Prints the value of the electromagnetic field components. For
type=print, prints one component of the field in a 2-d table. Any
coordinate plane can be printed (XY ... ZT). For type=grid or
type=cylinder, writes a file in fieldmap format. Global

G4beamline User’s Guide

79

probefield

1/10/14 TIR

coordinates are used. Units are Tesla for B and MV/meter for E.

NOTE: This command cannot handle time dependency in the output
BLFieldMap file, but can in the printout.

Note: if you want to plot field vs position or time, the
'fieldntuple' command is probably better, as it is not limited to
the 2-d paper, is easier to use, and lets you use existing NTuple
plotting tools. If you just want to test a few points, the
'probefield' command lets you do that interactively.

Named Arguments:

type print, grid, or cylinder.

exit Set nonzero to exit after printing field
Arguments for type=print:

field The field to print (Bx,By,Bz,Ex,Ey,Ez,Btot,Etot).
layout Layout (RowCol) - 2 chars 'AB' each of {xyzt}.
X The starting value of x (mm).

y The starting value of y (mm).

b4 The starting value of z (mm).

t The starting value of time (ns).

drow The incr between points in each row (mm|ns).
dcol The incr between points in each column (mm|ns).
nrow The number of rows.

ncol The number of columns.

Arguments for type=grid:

file Filename to write fieldmap to.

comment Comment for fieldmap.

X0 Initial value of X (mm, default=0).

YO0 Initial value of Y (mm, default=0).

70 Initial value of Z (mm, default=0).

nX Number of points in X.

nY Number of points in Y.

nz Number of points in Z.

dx Interval in X between points (mm) .

dy Interval in Y between points (mm) .

dz Interval in Z between points (mm) .

Arguments for type=cylinder:

file Filename to write fieldmap to.

comment Comment for fieldmap.

70 Initial value of Z (mm, default=0).

nR Number of points in R.

dR Interval in R between points (mm) .

nz Number of points in Z.

dz Interval in Z between points (mm) .

Prints B and E fields at specified points.
Intended primarily for debugging. Prints Bx,By,Bz in Tesla, and
Ex,Ey,Ez in MegaVolts/meter. Each input line is x,y,z,t separated

by spaces or commas; omitted values are set to 0.0.

Field Values are printed after the reference particle is tracked.
Only global coordinates are used.

Positional arguments are used as input lines before reading the
inputFile.

G4beamline User’s Guide

80

profile

randomseed

reference

1/10/14 TIR

Named Arguments:

inputFile Filename for reading list of points (- = stdin)
outputFile Filename for output (- = stdout)
exit Set nonzero to exit after printing field

write beam profile information to a file

This command accumulates the moments of the track distributions
during the run, and at the end of run prints the mean, sigma,
emittance (RMS), alpha, and beta (Twiss parameters) for the
tracks. Each z position generates a line in the output file.

Each value in z and zloop can be an expression using double
constants and the usual C operators and functions.

NOTE: This computation has two rather serious deficiencies:

1) it includes all tracks, with no sigma cut, so a single
outlier track can have a large effect on sigmas and
emittances.

2) its emittance does not include the vector potential.

To avoid these deficiencies, it may be better to write NTuples
and apply an external program such as ecalc9.

Named Arguments:

b4 Comma-separated list of Z positions for profiling
(mm)

zloop Loop in z, first:last:incr (mm)

require logical expression for cutting (default=true)

particle Name of particle to profile (default=mu+)

file Output filename (default=stdout)

filename Synonym for file

coordinates Coordinates: centerline or reference (default=c).

control pseudo random number generator seeds

This randomseed command controls the pseudo random number
generator seed at the start of each event. The unnamed argument
can be any of (case insensitive):

EventNumber

None

Time

Set 12345

Now 12345
EventNumber is the default and permits events to be re-run; None
does not re-seed the PRNG at each event, and Time is like None
after seeding with the time of day in microseconds; Set (Now)
seeds the generator immediately with the wvalue of the second
argument (a long), and then acts like None.

Define a reference particle.
The reference particle is nominally headed in the +7Z direction.
Multiple reference particles can be defined, at different

positions, momenta, particle types, etc. All coordinates are
centerline coordinates.

G4beamline User’s Guide

81

If desired, the referenceMomentum will be tuned to a specific
value at a later z position in the beamline by giving values for
tuneZ, and tuneMomentum; tolerance can be set if desired.

Normally used in conjunction with a 'beam' command.

Named Arguments:

particle Reference particle name

beamX Reference location in X (mm)

beamY Reference location in Y (mm)

beamz Reference location in Z (mm)

beamT Reference time (ns)

rotation Rotation of the beam

referenceMomentum Reference particle momentum (MeV/c)

beamXp Reference particle Xp (radians)

beam¥p Reference particle Yp (radians)

meanMomentum Synonymn for referenceMomentum

meanXp Synonym for beamXp.

mean¥Yp Synonym for beamYp.

tune?Z Z position for momentum tuning.

tuneMomentum Desired momentum for momentum tuning.

tolerance tolerance for momentum tuning (0.001 MeV/c).

noEfield Set nonzero to make this Tune and Reference
particle not respond to E fields (ICOOL style)

noBfield Set nonzero to make this Tune and Reference
particle not respond to B fields (ICOOL style)

noEloss Set nonzero to make this Tune and Reference

particle not respond to ionization energy loss
(ICOOL style)
P Synonym for referenceMomentum

reweightprocess modify the cross-section of a physics process.

This command will modify the cross-section of a physics process,
modifying the track weights so that weighted histograms give the
same statistical result as if the command were not used. Used
properly, this can greatly reduce the variance of the result.

Care should be taken to ensure that all regions that should be
sampled actually are sampled. For instance, if ratio>1 the
interaction length will be reduced, and deep inside an absorber
there may be no sampling because no simulated tracks ever get
there, even though real tracks will. If ratio<l then the upstream
regions of absorbers will be under sampled; this is usually OK,
as the desired result is to increase the sampling deep inside the
absorber.

For ratio>>1 this command can be used to examine rare processes.
This can induce multiple rare interactions in an event when
normally none would be expected; the weights will still correctly
correspond to the real interaction, even though the event
topologies don't.

This command cannot reweight any continuous process (e.g.

multiple scattering, ionization energy loss, etc.) -- it will
issue a fatal exception if applied to such a process.

1/10/14 TIR G4beamline User’s Guide

rfdevice

1/10/14 TIR

This command should not be applied to other processes that
re-weight tracks (e.g. the neutrino command). Indeed it probably
won't give the correct weights if any such process applies to the
particle (except for itself, it cannot determine the unmodified
interaction length of such procsses, which is needed to compute
the weight).

The re-weighting applies to both PostStep and AtRest processes,
but some AtRest processes do not work with this re-weighting; for
instance, Decay works properly in PostStep for a moving particle,
but not for a stopped one AtRest. This is related to the Geant4
limitation that exactly one process be active AtRest, and exactly
one step be taken.

Be sure to test your use of this commnd for a simple physical
situation before believing its results.

Named Arguments:

particle Comma-separated list of particle patterns ('' =>
all).

process Comma-separated list of process patterns.

ratio Ratio of artificial to real cross-section.

Defines an rfdevice (RF cavity)

An rfdevice (RF cavity) is the basic RF element used to construct
a linac. The G4beamline convention is that 0degRF is the positive
going zero crossing of the electric field, so generally
phaseAcc=90 (degRF) is on-crest.

The timeOffset parameter, if set, fixes the overall global
absolute timing of the cavity relative to time=0 of the
simulation. If unspecified, OdegRF is determined via the
timingMethod setting. The default, timingMethod=atZlocal, defines
0degRF such that the test particle will arrive at the timingAtzZ=#
location then.

For longitudinal cavities, timingMethod=maxEnergyGain emulates
how most cavities in linacs have their overall timing determined;
while maxX would be appropriate for a horizontal transverse
deflecting cavity.

Independent of how OdegRF is found, exactly two of the set of
maxGradient, phaseAcc, and one fixed output quantity
(fixMomentum, fixEnergyGain, fixTransitTime, fixXdeflection, or
fixYdeflection) must be specified to deterimine the final
rfdevice timing. For example, with maxGradient and phaseAcc set,
the energy gain would be determined, while if maxGradient and
fixEnergyGain were set, the phaseAcc would be determined.

The pipe, walls, and collars are made of copper by default. Pipe,
wall, collar, winl, and win2 may be omitted by setting their
thickness to 0. Common usage is to set the collar values such
that, by placing multiple rfdevices sequentially, the collars
form a beam pipe between them.

Note that section 4.4 of the User's Guide has a dimensioned

G4beamline User’s Guide

&3

drawing of a pillbox. Due to the presence of an (usually)
invisible timing volume, care must be taken when placing objects
within an rfdevice.

See the User's Guide for details on how to use this complex

element.

Named Arguments (#=cannot be changed in place cmd) (@=Tunable):
maxGradient The peak gradient of the cavity (MV/m) @
color The color of the cavity

frequency The frequency of the cavity (GHz) #
innerLength The inside length of the cavity (mm) #
innerRadius The inside radius of the cavity (mm) #
pipeThick The thickness of the pipe wall (mm) #
wallThick The thickness of the cavity walls (mm) #
wallMat The material of all the walls [Cu]
irisRadius The radius of the iris (mm) #

collarRadialThick The radial thickness of the collar (mm) #

collarThick The thickness of the collar along z(mm) #

winlThick The thickness of the central portion of the
windows; zero for no window (mm) #

winlOuterRadius The radius of the central portion of the windows

(mm) #

win2Thick The thickness of the outer portion of the windows;
zero for no window (mm) #

winMat The material of the windows [Be].

phaseAcc The reference phase of the cavity (degrees).

skinDepth The skin depth (mm). #

timingTolerance Tolerance for timing tuning (ns)

maxStep The maximum stepsize in the element (mm).

cavityMaterial Material of cavity volume [Vacuum].

timeOffset Time offset for cavity [set via timingMethod] (ns).
@

timeIncrement Increment to timeOffset, applied AFTER tuning.
(ns) .

timingMethod Method for determining the nominal timeOffset {atZ,
maxk, noE, minE, maxT, nomT, minT, maxX, noX, minX,
maxy¥, noY, minY}.

timingAt?Z Local Z location for timing (mm) .

fixMomentum Specify total output momentum (MeV/c).

fixEnergyGain Specify energy gain (MeV).

fixTransitTime Specify transit time (ns).

fixXdeflection Specify local output XZ angle (degqg).

fixYdeflection Specify local output YZ angle (degqg).

fixTolerance Specify allowable error on fixed settings [l.e-3].

verbose Set nonzero to show timing volume and print info
messages [1].

fieldMapFile Filename for BLFieldMap (pillbox if null). #

kill Set nonzero to kill tracks that hit the pipe,
walls, or collars [0].

setdecay Set lifetime, decay channels, and branching ratios for a particle's
decay.

The particle is specified by name as the first positional
argument.

1/10/14 TIR G4beamline User’s Guide

The lifetime of the particle can be set, unless it is a
short-lived particle (for which lifetime is fixed at 0 -- these
are particles like quarks, Zs, and Ws). Units are ns.

Decay channels are specified 'daughterl,daughter2=BR', where the
daughter names are separated by commas, and the branching ratio
is a value between 0 and 1 (inclusive); the order of daughters
does not matter. The sum of all BRs must be 1.0. It is best to
use existing channels for the particle, because the code for the
decay distribution is retained; new decay channels are given a
default phase-space distribution, which is probably valid only
for a 2-body decay of a spin 0 particle. New channels are limited
to 4 daughters. Note that all desired decay channels must be
listed.

Example to force fast decay (0.1 ns) of pit+ to a positron:
setdecay pi+ lifetime=0.1 e+,nu e=1.0

showmaterial Set the colors for selected materials.

Arguments are of the form 'name=1,1,0', where name is the name of
a material, and 1,1,0 is the R,G,B value desired for its color
("' for invisible) Set hideOthers=1 to make all other materials
invisible. BEWARE: 'Vacuum' and 'vacuum' are different materials,
as are 'Iron' and 'Fe'.

solenoid defines a solenoid (a coil and current)
A solenoid is a coil and a current. If alternate is nonzero, then
each placement of the solenoid (or an enclosing group) will flip

the sign of current.

Named Arguments (#=cannot be changed in place cmd) :

coilName The name of the coil (must exist) #

current The current density in the conductor (Amp/mm”2)
color The color of the solenoid (''=invisible).
alternate Set nonzero to alternate sign each placement.
kill Set nonzero to kill all tracks that hit the coil.
coil Synonym for coilName. #

spacecharge Beam-frame Green's function space charge computation

This is a space charge computation for bunched beams. It uses a
grid in the beam frame to solve Poisson's equation via a Green's
function with infinite boundary conditions; the E field is
boosted back to the lab frame E and B for tracking.

Macro-particles are used to enable the simulation of larger
bunches than can be feasibly simulated as individual particles;
the macro-particles have zero radius, but are pro-rated into the
nearest eight grid points when placed into the grid. This
computation can handle up to about a million macro-particles, but
100,000 is more sensible for all but the simplest physical
situations.

The bunch is created from the beam tracks before tracking begins.
There is one bunch for each reference particle. Particles in the

1/10/14 TIR G4beamline User’s Guide

1/10/14 TIR

bunch must be the same particle as the reference, must initially
be within {dx,dy,dz} of the reference particle, and when boosted
to the reference particle's rest frame must initially have beta <
maxBeta.

After boosting the particles to the beam frame, they are placed
into the grid, pro-rating to the eight nearest grid points. The
grid is dynamically re-sized to keep the 99th percentile of the
particles between 0.5 and 0.67 of the grid size. This maintains a
reasonable balance between resolution of grid points within the
bunch and covering all of the particles. Particles located at
>85% of the grid size do not contribute to the field computation,
but are tracked using the field of the rest of the bunch (and
other bunches) .

The grid has {nx,ny,nz} points; there is a small computational
advantage to using powers of 2, but any values >1 can be used.
For efficiency, the convolution of the Green's function with the
charge grid is performed using FFTs; the grid is doubled in each
dimension with the proper symmetry applied to the Green's
function, so the cyclical convolution of the FFTs gives the
proper potential with infinite boundary conditions.

Outside the grid an approximation is used. An approximation grid
is constructed, with the same size of the Poisson grid, but using
{nxApprox, nyApprox,nzApprox} points. Particles are placed into
this approximation grid, and the mean position is kept as well as
the charge. Approximation grid points with less than 1% of the
total charge are consolidated with their inner neighbors. The
non-zero approximation grid points are treated as point charges
when computing the potential outside the grid. For reasonably
Gaussian bunches, {7,7,7} are reasonable values for the
approximation grid sizes.

The E field in the beam frame is computed via the derivatives of
the linear interpolating function using the eight nearest grid
points, and is boosted back to the lab frame E and B for tracking
by the usual Geant4 routines.

Bunch particles that get destroyed cease contributing to the
bunch. As the bunch particles are selected during start-up, no
additional particles are ever added to a bunch. This algorithm
handles multiple bunches of any particle types.

NOTE: For now, the reference MUST be parallel to the Z axis.

Named Arguments:

deltaT Time step (ns).

charge Charge of macro particles (times particle charge).
nx Number of grid points in x (65).

ny Number of grid points in y (65).

nz Number of grid points in z (65).

dx Max distance of particle to reference in x (mm)

dy Max distance of particle to reference in y (mm)

dz Max distance of particle to reference in z (mm)
NnXApPpProx # bins in x in approximation (7).

nyApprox # bins in y in approximation (7).

G4beamline User’s Guide

86

nzApprox # bins in z in approximation (7).

maxBeta Max beta (v/c) of particle in beam frame (0.1).
verbose Non-zero for verbose prints (0).
ignoreFieldWhenTracking For testing only (0).
useApproximationOnly For testing only (0).

fixedGrid Nonzero prevents re-sizing the grid (0).

percentile Percentile of charge distribution used for grid
sizing (99).

minActive Minimum # active tracks in bunch; if < 0 is % of
initial bunch size (-95).

spacechargelw Lienard-Wiechert space charge computation

sphere

1/10/14 TIR

This is a space charge computation that uses macro-particles to
simulate more particles than is feasible to track individually.
Each macro-particle is tracked as a single particle, but its
charge is multiplied by the macro-particle charge when computing
the field. The radius of the macro-particle is used to avoid the
singularity from a point charge; outside the radius the
macro-particle is treated as a point charge; inside the radius
the point-charge field is multiplied by (r/radius)”K (radius and
K are parameters).

The trajectory of every particle is kept, and when computing the
field at a point, the intersection of the point's past lightcone
with the trajectory is used to determine the field from the
macro-particle; there is a loop over all particles except the one
currently being tracked. This computation scales as N*2, where N
is the number of macro-particles; that makes it computationally
infeasible for more than a few hundred macro-particles. But for
the particles used, it is correct to within the following
approximations: a) using macro-particles, b) linearly
interpolating between steps, c) omitting the radiation term in
the L-W potential.

The fields are computed using eqg. 63.8-9 (p 162) of Landau and
Lifshitz, Classical Theory of Fields , ignoring the radiation
term. The computed fields are used in the usual Geant4 tracking.
Particle creation and destruction are handled properly.

This algorithm is primarily intended to test other space charge
algorithms.

Named Arguments:

deltaT Time step (ns).

radius Radius of macro-particles (mm).

charge Charge of macro-particles (times particle charge).
trackTwice O=linear extrapolation, l=track (0)

verbose Non-zero for verbose prints (0).

K Exponent for macro-particle density (1).

ignoreFieldWhenTracking For testing only (0).
construct a sphere (or section of one)
This is a direct interface to G4Sphere.

Named Arguments:

G4beamline User’s Guide

87

start

survey

tess

1/10/14 TIR

innerRadius The inside radius of the sphere (mm)

outerRadius The outer radius of the sphere (mm)

initialPhi The initial Phi value (deg; 0 for all)

finalPhi The final Phi value (deg; 360 for all)
initialTheta The initialTheta of the sphere (deg, 0 for all)
finalTheta The finalTheta of the sphere (deg, 180 for all)
maxStep The maximum stepsize in the element (mm)
material The material of the sphere

color The color of the sphere (''=invisible)

kill Set nonzero to kill every track that enters.

Define the initial start of centerline coordinates.

If used, this command must come before any other command that
puts an element into the world or affects the centerline
coordinates (place, beam, corner, cornerarc, and reference
commands) . This command may not always be needed, but it is
needed to eliminate the ambiguities in the global to centerline
coordinate transform, and when simulating a ring to ensure that
sensible values of the centerline coordinates are used.

Note that the radiusCut is important to reduce or eliminate
ambiguities in the global to centerline coordinate transform. It
can also be used to 'shield' the beamline to prevent particles
from taking unusual paths around the outside of beamline
elements.

Named Arguments:

b4 The global x position of the start.

% The global y position of the start.

z The global z position of the start.

initialZz The initial centerline z value.

rotation The initial rotation of the centerline.
radiusCut The radius cut for the initial segment (mm).
ring Set nonzero to indicate a ring is present.

survey command.

The survey command writes the coordinates of the front and rear
points of each element to a file (stdout if '-'). For most
elements the points written are the geometrical centers of their

front and rear faces. Elements are all objects put into the world

via the place command.

Entries are sorted by Zfront. The format of each line is:
command name Xfront Yfront Zfront Xrear Yrear Zrear

Coordinates can be global, centerline, or reference (if present).

Named Arguments:

coordinates Coordinate type (global).
filename Filename to write (-).
file Synonym for filename.
coord Synonym for coordinates.

Alias for 'tessellatedsolid'.

G4beamline User’s Guide

88

tessellatedsolid construct a tessellatedsolid.

A tessellatedsolid is defined by facets on its surface. Each
facet is either a triangle or a planar quadrilateral, and the set
of surfaces must be closed.

The surface definition can be read from a file or from the
input.file. Leading whitespace is removed, and '*' represents a
series of 0 or more non-blank chars. The first word in the line
describes its content:

#* comment (ignored).

tess* also ignored.

v* a vertex containing 3 doubles (x,y,z in local coords).

v* a vertex containing an integer and 3 doubles (index,x,y,z).
£* a facet, containing 3 or 4 indexes into the vertex array.

end* end of input (or EOF).

The only requirement on order is that the vertices mentioned in a
facet line must already be present in the vertex array. Each
vertex is appended to the end of the vertex array; for VERTEX
lines, large gaps in the sequence of indices will waste memory.
The first vertex is entry O.

Named Arguments:

filename File to read for definition.
maxStep The maximum stepsize in the element (mm)
material The material of the tessellatedsolid
color The color of the tessellatedsolid (''=invisible)
kill Set nonzero to kill every track that enters.
debug Set nonzero to display markers on surface.
file Synonym for filename.

test test random number seeds.
Test

timentuple Construct an NTuple of tracks at a specified time.

A time NTuple generates an NTuple of every track at a specified
global time. It uses a linear interpolation in the step that
straddles the required time, so accuracy will suffer for large
steps. The NTuple uses centerline coordinates, if available.

The standard NTuple fields are:
X,yY,2 (mm)
Px, Py, Pz (MeV/c)
t (ns)
PDGid (ll=e-, 13=mu-, 22=gamma, 21l=pi+, 2212=proton, ...)
EventID (may be inexact above 16,777,215)
TrackID
ParentID (0 => primary particle)
Weight (defaults to 1.0)

The following additional fields are appended for format=Extended,
format=asciikExtended, and format=rootExtended:

1/10/14 TIR G4beamline User’s Guide

torus

totalenergy

1/10/14 TIR

Bx, By, Bz (Tesla)

(
Ex, Ey, Ez (Megavolts/meter)
ProperTime (ns)
PathLength (mm)

PolX, PolY, PolZ (polarization)

InitX, initY¥, InitZ (initial position, mm)
InitT (initial time, ns)

InitKE (MeV when track was created)

Valid Formats (ignore case): ascii bltrackfile dummy for009
for009.dat root trackfile Extended asciiExtended rootExtended

Named Arguments (#=cannot be changed in place cmd) :

time The global time of the sampling (ns).

format The NTuple format (see above for list).

filename The filename of the NTuple.

file Synonym for filename.

require Expression which must be nonzero to include the
track (default=1) #

coordinates Coordinates: global, centerline, or reference
(default=c) .

referenceParticle Set to 1 to include the Reference Particle.
construct a torus.

This is a direct interface to G4Torus. The major radius is in the
X-Y plane, with phi=0 along X.

Named Arguments:

innerRadius The inner radius of the torus (mm)

outerRadius The outer radius of the torus (mm)

majorRadius The major radius of the torus (mm)

initialPhi The initial phi around major radius (0 degrees).
finalPhi The final phi around major radius (360 degrees).
maxStep The maximum stepsize in the element (mm)
material The material of the torus

color The color of the torus (''=invisible)

kill Set nonzero to kill every track that enters.

Print total energy deposited in selected volumes.

At end of run, prints the total energy deposited in the selected
volumes.

Volume-name patterns are like UNIX filename patterns: e.g.
'*[AB]*' matches any name containing an A or a B.

Tracks that are killed have their kinetic energy summed into the
volume where they were killed, unless they are killed because
they leave the World.

With ancestors=1, energy deposited in matching volumes is added
into their ancestors; energy deposited directly into those
ancestors is not summed into them unless their names also match.
That is, if A is a child of B, but only A matches the list of
volume-names, energy deposited into A will be reported in both A
and B, but energy deposited directly into B is ignored.

G4beamline User’s Guide

90

trace

1/10/14 TIR

Named Arguments:

volumes Comma-separated list of Volume-Name patterns (*)

ancestors Set nonzero to sum energy into all ancestor
(enclosing) volumess (0).

enclosing Synonym for ancestors.

filename Filename to write summary (stdout).

file Synonym for filename.

Specifies tracing of tracks.

Generates a separate NTuple for each track, with 1 row per step,
unless oneNTuple is nonzero (in which case all tracks are put
into a single NTuple). So format=ascii generates one file per
track with names generated by the pattern in filename (first %d
is replaced by event #, second %d is replaced by trackId); for
oneNTuple, the default filename is AllTracks.txt.

Note that without a trace command no traces are generated, so to
trace just the tune and reference particles include a trace
command with no arguments.

In collective tracking mode, oneNTuple must be nonzero, and the
entries will be generated only at collective steps (usually at a
specified deltaT).

Unlike other NTuple commands, the require expression applies to
entire tracks, not individual entries.

The standard NTuple fields are:
X,yY,2 (mm)
Px, Py, Pz (MeV/c)
t (ns)
PDGid (ll=e-, 13=mu-, 22=gamma, 21l=pi+, 2212=proton, ...)
EventID (may be inexact above 16,777,215)
TrackID
ParentID (0 => primary particle)
Weight (defaults to 1.0)
The trace includes the following fields:
Bx, By, Bz (Tesla)
Ex, Ey, Ez (Megavolts/meter)

The following additional fields are appended for format=Extended,
format=asciikExtended, and format=rootExtended:

ProperTime (ns)

PathLength (mm)

PolX, PolY, PolZ (polarization)

InitX, initY, InitZ (initial position, mm)

InitT (initial time, ns)

InitKE (MeV when track was created)

Valid Formats (ignore case): ascii bltrackfile dummy for009
for009.dat root trackfile Extended asciiExtended rootExtended

Named Arguments (#=cannot be changed in place cmd) :

nTrace Number of tracks to trace.
format Format of the NTuple (see above for list).

G4beamline User’s Guide

91

trackcolor

trackcuts

tracker

1/10/14 TIR

oneNTuple Nonzero to put all traces into a single NTuple.
primaryOnly Nonzero to trace only primary tracks.

traceTune Nonzero to trace tune tracks (default=1).

filename Filename (Ev%dTrk%d.txt or AllTracks.txt).

file synonym for filename.

require Expression which must be nonzero to trace the track
(default=1) #

coordinates Coordinates: global, centerline, or reference
(default=c) .

Alias for 'particlecolor'.

Specifies per-track cuts.
Applied to each track before tracking, and at each step.

Named Arguments:

kill List of particles to kill (comma separated).

keep List of particles to keep (kill all others).

killSecondaries Set nonzero to kill all secondaries.

kineticEnergyCut Minimum K.E. to track (0 MeV).

kineticEnergyMax Maximum K.E. to track (infinite MeV).

maxTime Maximum lab time to track (1000000 ns).

keepPrimaries Set nonzero to keep tracks with ParentID==
regardless of other tests.

steppingVerbose Set nonzero to print kills (defaults to parameter
value) .

Defines a tracker.

A tracker consists of several trackerplane-s and can fit a track
to wire hits and times in the trackerplanes. This is a simple
algorithm that does not handle backgrounds or multiple hits. It
assumes that every track hits each trackerplane at most once. It
is intended to be used to explore resolutions and the effects of
survey errors. A tracker is a logical combination of its
trackerplanes -- the tracker cannot be placed, but its
trackerplanes must be placed into the system.

The fitting algorithm used requires that all of its parameters
have comparable scales, so the 'scaleX', 'scaleXp', 'scalePtot',
and 'scaleT' arguments should be set to the approximate sigmas of
the tracker. They should be within a factor of 10 of the actual
values, but closer is better. At the end of fitting tracks a
summary is printed that flags each parameter with 'RESCALE' if
its scale is too different from its sigma (factor of 5 or more).

NOTE: if the tracker cannot measure Ptot, then 'scalePtot' MUST
be set to zero. If the tracker cannot measure T, then scaleT MUST
be set to zero. Parameters with zero scales are held fixed at
their true-track values.

NOTE: the trackerplane-s of a tracker MUST be placed in the order
that particles will hit them; the code does not sort them.
Usually this means that each place command of a trackerplane must
have a larger z value than the previous place command. They must

G4beamline User’s Guide

92

true Px,

1/10/14 TIR

also come after the trackerZ value of the tracker command.

A tracker has 3 modes of operation:

true Each track of each event is written to a
TrackerHits NTuple if it hits all trackerplanes;
the NTuple includes both the true track values
and the individual wire hits for each trackerplane.

fit A track is fit to the wire hits from a previous
run, and the fit track is written to a TrackerFit
NTuple (includes true values).

ignore Any track is ignored.

See the 'trackermode' command to control the mode of trackers.

The TrackerHits NTuple written in 'true' mode contains:
true x, true y, true z, true Px, true Py, true Pz, true t,
true PDGid, true EventID, true TrackID, true ParentID,
true Weight, ... plus 1 hit and 1 time per trackerplane.
(the first 12 are the same as a BLTrackFile.)

The TrackerFit Ntuple written in 'fit' mode contains:
%X, vy, z, Px, Py, Pz, t, PDGid, EventID, TrackID, ParentID,
Weight, ChisqgPerDF, nDF, nHit, nIter, true x, true y, true z,

true Py, true Pz, true t.
(the first 12 are from the fit and are the same as a
BLTrackFile.)

The parameters of the fit are: x, y, dxdz, dydz, Ptot, time. You
must ensure that there are at least as many data points as free
parameters (scaleT=0 fixes time; scalePtot=0 fixes Ptot). Each
trackerplane with nonzero wireSpacing provides a data point; each
trackerplane with nonzero sigmaT provides a data point;
trackerplanes that measure both provide two data points. You must
have enough trackerplanes to meet this requirement, and must set
minHits large enough to meet it. The TrackerFit NTuple has a
field nDF that gives the number of degrees of freedom for the
fit, which is defined as (#DataPoints)- (#FreeParameters); it also
has nHit which gives the number of trackerplane-s hit.

Note the tracker can simulate survey errors —-- see the
'trackerplane' command for details (each plane can have different
errors) .

Both the true and the fit tracks are reported at reportZ, which
defaults to the Z position of the tracker.

Note that beamlossntuple and newparticlentuple will get many
entries per track when used in mode=fit -- the fit runs the track
many times through the tracker (30-100, up to maxIter).

NOTE: the trackermode command must preceed all tracker commands
in the input file, and each tracker command must preceed all of
its trackerplane commands. The trackerZ value must also preceed
all trackerplane-s, but reportZ can be equal to or anywhere after
trackerZz.

G4beamline User’s Guide

93

trackermode

1/10/14 TIR

Note that each trackerplane must have a unique name. This means
you should either have a separate trackerplane command for each
one (with unique name), or use the rename= argument to the place
command (again with unigque name). If you use groups for
trackerplane-s, use rename=+ in the group.

NOTE: This command does not work properly in collective tracking
mode.

Named Arguments:

trackerz The Z position of the tracker (Centerline, mm).

report? The Z position at which fit tracks are reported
(Centerline, mm, default=tracker?z).

scaleX Scale for X and Y (mm); default=lmm.

scaleXp Scale for dxdz and dydz (radians), default=0.001.

scalePtot Scale for Ptot (MeV), default=0. Set to 0.0 if
tracker cannot determine momentum.

scaleT Scale for t (ns), default=0. Set to 0.0 if tracker
cannot determine time.

minPz Minimum Pz for valid tracks (default=10 MeV/c)

minHits Minimum number of hits for fitting (# planes).

tolerance Track fitting tolerance (mm) (default=0.01 mm)

maxIlter Maximum iterations during fitting (default=200).

verbose O=none, l=result, 2=iterations, 3=detail,
default=0.

format Format of output NTuple.

filename Filename of output NTuple.

for009 Set nonzero to also output TrackerFit as
FOR009.Dat.

file Synonym for filename.

Sets mode for all trackers, manages track fitting.

USAGE: trackermode mode [file=...]
mode can be any of:

true tracks true tracks (normal operation)

fit fits tracks to previous 'true' output

both does both true and fit at once
'fit' requires the filename argument to be the output of a
previous 'true' run (filename is ignored in other modes); each
tracker processes all of its tracks in the file. 'true' mode

simply denotes the standard G4beamline operation, and the
simulated tracks are taken to be the 'true' tracks of the system;
the response of the tracker(s) to these tracks is then simulated
in 'fit' mode. 'both' tracks a 'true' event, and then a fit is
peerformed in each tracker for which its first track hit all
trackerplane-s.

Note that in 'true' mode every track that hits all trackerplane-s
is considered, but in 'both' mode only the first track of the
event can be considered.

In fit mode, the filename argument MUST be different from the
parameter 'histoFile', because this run must not overwrite the

Root file from the previous (true) run.

One trackermode command controls the mode of all trackers. 'true'

G4beamline User’s Guide

94

trackerplane

1/10/14 TIR

mode is normal G4beamline operation, and is the same as if no
trackermode command was present.

Note that the geometry of the system must not change between a
'true' run and a 'fit' run. You can, however, make small
variations in fields to explore how errors in setting them will
affect the fitted tracks. The trackerplane command can simulate
survey errors.

NOTE: the trackermode command must preceed all tracker commands
in the input file.

Named Arguments:
filename Filename to read for fitting tracks.
file Synonym for filename.

Construct a tracker plane.

A trackerplane belongs to a specific tracker, and represents one
measuring element of the tracker. While the term 'wire' is used,
a trackerplane can model any planar measuring device that
measures one dimension using equally spaced detectors that are
either on or off (hit or not hit). A trackerplane can be circular
(specify radius and possibly innerRadius) or rectangular (specify
height and width).

The wires are at angle theta from the vertical, so theta=0 means
vertical wires that measure x; theta=90 means horizontal wires
that measure y; theta=180 also measures x, but increasing x means
decreasing wire #.

Setting wireSpacing=0 means there are no wires, which is useful
for a trackerplane that models a scintillator used for track
timing (set sigmaTime >= 0 to indicate that).

sigmaTime>0 means this plane can measure the time of the track
with that resolution. A Gaussian random number is added to the
true track's time at this plane when reading the TrackHit NTuple.

Survey errors can be modeled using the err-arguments -- the
values they specify are applied during trackfitting (but not for
true tracks). errType: 'fixed' means error values given are the

actual values, 'gaussian' means error values are the sigma of a
Gaussian random number, 'rect' means error values are the
half-width of a uniform random number. The random number is
picked before the run begins; the random-number seed is set from
the clock so every run will have different random errors.

trackerplane has 3 modes:

true The trackerplane reports the hit wire and time to
the tracker;
fit The trackerplane reports the Chisqg contribution of

the fit track distance to the true track's hit wire
center, plus survey errors (if any). The track time
also contributes to the chisqg.

ignore Any track is ignored.

G4beamline User’s Guide

95

trap

tube

tubs

1/10/14 TIR

NOTE: the trackerplane-s of a tracker MUST be placed in the order
that particles will hit them; the code does not sort them.
Usually this means that each place command of a trackerplane must
have a larger z value than the previous place command. They must
also come after the trackerZ value of the tracker command.

Named Arguments:

tracker The tracker to which this plane belongs; REQUIRED.

radius The radius of the circular tracker plane (mm).

innerRadius The inner radius of the circular tracker plane (0
mm) .

height The height of the rectangular tracker plane (mm).

width The width of the rectangular tracker plane (mm).

length The length of the tracker plane (mm).

theta Wire angle in X-Y plane (deg). 0=>x, 90=>y...

wireSpacing Wire spacing (mm) .

wireOffset Wire # 0 offset (mm).

errType Error type: fixed, gaussian, rect.

errTheta Error in wire angle (deg).

errSpacing Error in wire spacing (mm).

errOffset Error in wire offset (mm).

sigmaTime Sigma for timing plane (ns), default=-1.
maxStep The maximum stepsize in the element (mm).
material The material of the tracker plane.

color The color of the tracker plane (''=invisible).

construct a solid trapezoid with axis along z.
This is a direct interface to G4Trap. The trapezoid is
symmetrical left-right, but upper or lower width can be larger or

smaller.

Named Arguments:

height The height of the solid trapezoid (mm)
upperWidth The upper width solid trapezoid (mm)
lowerWidth The lowerWidth of the solid trapezoid (mm)
Xul X position of upper left corner (mm)

Xur X position of upper right corner (mm)

X11 X position of lower left corner (mm)

Xlr X position of lower right corner (mm)
length The length of the solid trapezoid (mm)
maxStep The maximum stepsize in the element (mm)
material The material of the trapezoid

color The color of the trapezoid (''=invisible)
kill Set nonzero to kill every track that enters.

Alias for 'tubs'.

construct a tube or cylinder with axis along z.

This is a direct interface to G4Tubs, which can implement a tube
or cylinder; either can subtend less than 360 degrees in phi.

Named Arguments:

innerRadius The inside of the tube, 0.0 for cylinder (mm)
outerRadius The outer radius of the tube or cylinder (mm)

G4beamline User’s Guide

96

tune

initialPhi The initial Phi value (deg; 0 for all)

finalPhi The final Phi value (deg; 360 for all)

length The length of the tube or cylinder (mm)

maxStep The maximum stepsize in the element (mm)
material The material of the tube or cylinder

color The color of the tube or cylinder (''=invisible)
kill Set nonzero to kill every track that enters.
radius Synonym for outerRadius (mm)

Tune a variable used as argument to other elements.

This command samples the Tune particle track at z0, samples it
again at zl, and varies its tune variable in order to bring the
expression to zero. The tune variable is the first positional
argument, and can be used in the argument expression(s) for
tunable arguments located after z0. Due to the simple solver
used, there should be an approximately linear dependence between
the tune variable and the expression. This is suitable for tuning
the By field of a genericbend or the maxGradient of a pillbox. At
each solver step the saved Tune particle is re-started from zO,
and when it reaches zl the next step in the solver is taken.

Note that multiple tune commands can be used together, as long as
their z0-z1 regions are properly nested by at least 0.5 mm (i.e.
each pair of regions must either not overlap at all, or one must
be wholly contained in the other). This command can be
complicated to use; see the User's Guide for more description and
examples.

Named Arguments:

z0 The starting z position in CL coordinates.

zl The ending z position in CL coordinates.

initial Initial value of the variable 'name'

initialStep Initial step (0 to disable tuning)

step Synonym for initialStep

start An expression that must be nonzero to start tuning
(default=1)

expr The expression to tune to zero

tolerance The tolerance for expr to be zero

maxIter The maximum number of iterations (10).

usertrackfilter Construct a usertrackfilter that filters tracks via user code.

1/10/14 TIR

Named Arguments:

radius The radius of the circular element (mm).

innerRadius The inner radius of the circular element (0 mm,
solid).

height The height of the rectangular element (mm).

width The width of the rectangular element (mm).

length The length of the element (mm).

maxStep The maximum stepsize in the element (mm).

material The material of the element.

color The color of the element (''=invisible).

filterName Name of the UserTrackFilter.

filter Synonym for filterName.

G4beamline User’s Guide

97

init Initialization string passed to user setup().

virtualdetector Construct a VirtualDetector that generates an NTuple.

1/10/14 TIR

A VirtualDetector generates an NTuple of any track when it enters
the physical volume of the VirtualDetector. It may be placed via
multiple place commands (usually with a 'rename=det#' argument to
distinguish the different placements). If material is not
specified, it uses the material of the enclosing element. Every
placement creates an individual NTuple. For a circular
VirtualDetector give radius; for a rectangular one give height
and width; length is usually left at 1 mm, but can be set to
correspond to the length of a physical detector. The NTuple by
default uses centerline coordinates. The NTuple of the
virtualdetector can be included in an ntuple command by including
a pattern that matches its name in the 'detectors' argument to
the ntuple command. Note that must match the name as placed (i.e.
includes rename=), not the name given to this command. The
noSingles argument may be useful in this case to avoid a huge
NTuple of singles (an empty NTuple may be created).

Note that secondary particles created within the virtualdetector
will not get an entry until they have taken one step. They are
guaranteed to do so.

The standard NTuple fields are:
X,yY,2 (mm)
Px, Py, Pz (MeV/c)
t (ns)
PDGid (ll=e-, 13=mu-, 22=gamma, 21l=pi+, 2212=proton, ...)
EventID (may be inexact above 16,777,215)
TrackID
ParentID (0 => primary particle)
Weight (defaults to 1.0)

The following additional fields are appended for format=Extended,
format=asciikExtended, and format=rootExtended:
Bx, By, Bz (Tesla)

Ex, Ey, Ez (Megavolts/meter)
ProperTime (ns)
PathLength (mm)

PolX, PolY, PolZ (polarization)

InitX, initY, InitZ (initial position, mm)
InitT (initial time, ns)

InitKE (MeV when track was created)

Valid Formats (ignore case): ascii bltrackfile dummy for009
for009.dat root trackfile Extended asciiExtended rootExtended

Named Arguments (#=cannot be changed in place cmd) :

radius The radius of the circular VirtualDetector (mm).

innerRadius The inner radius of the circular VirtualDetector (O
mm, solid).

height The height of the rectangular VirtualDetector (mm).

width The width of the rectangular VirtualDetector (mm).

length The length of the VirtualDetector (mm).

maxStep The maximum stepsize in the element (mm).

G4beamline User’s Guide

98

zntuple

1/10/14 TIR

material The material of the VirtualDetector.

color The color of the VirtualDetector (''=invisible).
noSingles Set to 1 to omit the NTuple for singles.

format NTuple format: (see above for list).

filename filename ('' uses name to determine filename)
file alias for filename

require Expression which must be nonzero to include the

track (default=1l) #
referenceParticle Set to 1 to include the Reference Particle.

coordinates Coordinates: global, centerline, or reference
(default=c) .

kill Set to 1 kill all tracks after entering them into
NTuple (s) .

Generate an NTuple for each of a list of Z positions.

Generates an NTuple like a virtualdetector, but without a
physical volume. Tracks are forced to take steps within 2mm
surrounding each desired z position, and they are interpolated to
the desired z position. Each z position generates a separate
NTuple named Z123 (etc.). z accepts a list of z positions, and
zloop can generate a set of equally spaced z positions; both can
be used.

Each value in z and zloop can be an expression using double
constants and the usual C operators and functions.

The standard NTuple fields are:
X,yY,2 (mm)
Px, Py, Pz (MeV/c)
t (ns)
PDGid (ll=e-, 13=mu-, 22=gamma, 21l=pi+, 2212=proton, ...)
EventID (may be inexact above 16,777,215)
TrackID
ParentID (0 => primary particle)
Weight (defaults to 1.0)

The following additional fields are appended for format=Extended,
format=asciikExtended, and format=rootExtended:
Bx, By, Bz (Tesla)

Ex, Ey, Ez (Megavolts/meter)
ProperTime (ns)
PathLength (mm)

PolX, PolY, PolZ (polarization)

InitX, initY, InitZ (initial position, mm)
InitT (initial time, ns)

InitKE (MeV when track was created)

Valid Formats (ignore case): ascii bltrackfile dummy for009
for009.dat root trackfile Extended asciiExtended rootExtended

Named Arguments (#=cannot be changed in place cmd) :

z Comma-separated list of Z positions (mm)
zloop Loop in z, first:last:incr (mm)

noSingles Set to 1 to omit the NTuple for singles.
format NTuple format (see above for list)

file Output filename ('' uses name to determine

G4beamline User’s Guide 99

filename)

filename Synonym for file

require Expression which must be nonzero to include the
track (default=1l) #

referenceParticle Set to 1 to include the Reference Particle.

coordinates Coordinates: global, centerline, or reference
(default=c) .

1/10/14 TIR G4beamline User’s Guide 100

6 Examples

On Linux and Mac OS, the examples are found in the “examples” directory under the install directory.

On Windows, they are found there also, and a copy is placed into “My Documents\G4beamline
Examples” (“My Documents” => “Documents” on Vista).

The annotated output from Examplel is given in Appendix 5.

README.txt:

G4beamline Examples.

Look at the comments in each input file.

Examplel.g4bl
A simple first example. Puts a Gaussian beam into 4 detectors.

ExampleNO02.g4bl
Implements the Geant4 example/N02.

FieldLines.g4bl
Displays field lines for 4 solenoids.

Study2Cooling.gé4bl
Four cells of the Study 2 cooling channel (ca. 2003).

MultipleScattering.gé4bl
A simple simulation of multiple scattering and ionization energy
loss in various materials.

TungstenTarget.gdbl
An 8 GeV proton beam on a tungsten target.

MICE StageVI.gi4bl
A simulation of the MICE beamline and cooling channel in Stage VI,
from August 2005. Includes field maps for the bending magnets and
realistic window profiles for the absorbers. This is the largest
and most realistic example.

Idealized g-2.g4bl
A simulation of an idealized version of the BNL g-2 experiment.
100% polarized 3.094 GeV/c mu- circle in a 1.4513 T uniform B field,
while their spins precess, which affects the energies of their decay e-.

SpaceCharge.gdbl
A parallel-to-point quad triplet with space charge. With a bunch
charge of 1E10 the effects of space charge start to become visible;
with a bunch charge of 1E12 the focus is unrecognizable.

SampleMovie.gd4bl
Examplel.g4bl with a movie command added. Use movie.in with g4blmovie.

Movie.in
An input file for g4blmovie, works with SampleMovie.gdbl.

1/10/14 TIR G4beamline User’s Guide

101

triplet.sh

A script to tune a quad triplet for point-to-point or parallel-to-point

focusing.
Uses gminuit, tclsh, wish, and gnuplot.

emittancematch.sh
A script that demonstrated emittance matching.
Uses gminuit, tclsh, wish, and gnuplot.

Magnets/ and Windows/
Magnet field maps and window profiles for MICE StageVI.g4dbl.

6.1 Example1 — Simple Tracking and Virtualdetectors

Examplel.g4bl - simple first example

Simple example g4beamline input file:

L .

spaces into four detectors

QGSP is the "default" physics use-case for High Energy Physics

but QGSP BERT is better for low-energy simulations
physics QGSP_ BERT

the beam is nominally headed in the +Z direction

beam gaussian particle=mu+ nEvents=1000 beamZ=0.0 \
sigmaX=10.0 sigmaY=10.0 sigmaXp=0.100 sigma¥Yp=0.100 \
meanMomentum=200.0 sigmaP=4.0 meanT=0.0 sigmaT=0.0

a reference particle
reference particle=mu+ referenceMomentum=200

BeamVis just shows where the beam comes from

box BeamVis width=100.0 height=100.0 length=0.1 material=Vacuum color=1,0,0

place BeamVis z=0

define the detector
virtualdetector Det radius=1000.0 color=0,1,0

place four detectors, putting their number into their names
place Det z=1000.0 rename=Det#
place Det z=2000.0 rename=Det#
place Det z=3000.0 rename=Det#
place Det z=4000.0 rename=Det#

o O O

6.2 ExampleN02.g4bl — The Geant4 ExampleN02

ExampleN02.g4bl - mimic Geant4 examples/novice/N02, APPROXIMATELY

#

physics QGSP

material Pb A=207.19 Z=82 density=11.35

box Target width=50 height=50 length=50 material=Pb color=1,0,0

1/10/14 TIR G4beamline User’s Guide

a 200 MeV mu+ Gaussian beam is tracked through l-meter drift

102

1/10/14 TIR

material Xe A=131.29
virtualdetector Detl
virtualdetector Det2
virtualdetector Det3

Z=54 density=0.005458

width=480 height=480 length=100 material=Xe co

width=1344 height=1344 length=100 material=Xe

width=2208 height=2208 length=100 material=Xe

virtualdetector Det4 width=3072 height=3072 length=100 material=Xe

virtualdetector Det5 width=3936 height=3936 length=100 material=Xe

beam gaussian beamZ=-200 sigmaX=0 sigmaY=0 sigmaXp=0 sigmaYp=0 \
meanMomentum=3824 sigmaP=0 particle=proton nEvents=100

Target z=0

Detl z=800

Det2 z=1600

Det3 z=2400

Det4 z=3200

Det5 z=4000

place
place
place
place
place
place

6.3 FieldLines.g4bl

FieldLines.g4bl - display magnetic field lines.
Display magnetic field lines for 5 solenoids.

uncomment the following line to get a white background
#g4ui when=4 "/vis/viewer/set/background 1 1 1"

display magnetic field lines
fieldlines exit=1 center=0,0,0 nLines=100

five solenoids (note transparency to show lines inside them)
coil C innerRadius=100 outerRadius=120 length=100

solenoid S coil=C current=100 color=1,0,0,0.3

place S z=0

place z=500

place z=-500

place z=1000

place z=-1000

N n n n

physics is required, even though it is not used.

physics QGSP_ BERT

6.4 Study2Cooling.g4bl

Study2Cooling.gé4bl

Simple example g4beamline file:
There are 4 Study2 cooling cells.
This version uses a Gaussian beam

X % o X%

trace the first 10 tracks
trace nTrace=10

QGSP is the "default" physics use-case for HEP
physics QGSP disable=Decay

beam gaussian meanMomentum=200 sigmaP=-10 sigmaXp=0.01] sigma¥Yp=0.01
nEvents=100 beamZ=0

G4beamline User’s Guide

lor=1,

\

103

reference particle=mu+ referenceMomentum=200.0 beamZ=0
trackcuts kineticEnergyCut=50.0 killSecondaries=1

define the solenoids (use individual Focus solenoids for alternate=1 to work)
coil default material=Cu dR=5.0 dZ=5.0

solenoid default alternate=1 color=1,1,0

coil Focusl innerRadius=330.0 outerRadius=505.0 length=167.0 maxR=330.0

coil Coupll innerRadius=770.0 outerRadius=850.0 length=330.0 maxR=770.0
solenoid USFocus coilName=Focusl current=75.20

solenoid DSFocus coilName=Focusl current=-75.20

solenoid Coupl coilName=Coupll current=-98.25

define a detector for the center of each absorber
virtualdetector Det radius=179.9 length=l

define the absorber with flat Al windows
tubs Winl outerRadius=180.0 length=0.360 material=Al color=0.0,1.0,0.0
tubs LH2 length=350.0 outerRadius=180.0 color=1.0,0.0,1.0 material=LH2

place the virtualdetector into the absorber, so its front is in the center
place Det z=0.5 parent=LH2 color=1,1,1

group Abs radius=0
place Winl
place LH2
place Winl
endgroup

tune the RF Gradient
tune Grad z0=100 z1=11300 initial=15 step=0.1 expr=Pz1-Pz0 tolerance=0.001

define the pillbox RF cavity, and put 4 of them into a linac

pillbox RF innerLength=466.0 frequency=0.20125 maxGradient=Grad \
irisRadius=160.0 winlThick=0.300 win2Thick=0.700 wallThick=5.0 \
winMat=Be collarThick=5.0 phaseAcc=40.0 maxStep=10.0

group Linacl radius=0
place RF rename=RF# copies=4

endgroup

define one cooling cell
group Cell length=2750.0
place Abs z=-1033.0
place USFocus z=-1291.5 rename=Focus
place DSFocus z=-774.5 rename=Focus
place Coupl z=342.0 rename=Coupl
place Linacl z=342.0 rename='"'"
endgroup

tubs Spacer length=200 outerRadius=300 material=Vacuum
place Spacer z=100

place 4 cells
place Cell copies=4 rename=C#

place Spacer

1/10/14 TIR G4beamline User’s Guide 104

6.5 MultipleScattering.g4bl

MultipleScattering.g4bl TJR 1-FEB-2006 mu+ scattering

Multiple scattering and ionization energy loss in materials.

R

lengths are mm; momentum is MeV/c, density is gm/cm”3

physics QGSP BIC
beam gaussian particle=mu+ meanMomentum=172 nEvents=100000
trackcuts keep=mu+

#param histoFile=Li
#fmaterial Li A=6.941 Z=3 density=0.53
#tubs Target outerRadius=100 material=Li length=12.78 color=1,0,0

material is Be2 because Be is already defined with slightly different density
#param histoFile=Be

#material Be2 A=9.012182 Z=4 density=1.85

#tubs Target outerRadius=100 material=Be2 length=3.73 color=1,0,0

#param histoFile=H2
#material H2 A=1.00794 Z=1 density=0.0755
#tubs Target outerRadius=100 material=H2 length=159 color=1,0,0

param histoFile=C
material C A=12.011 Z=6 density=1.69
tubs Target outerRadius=100 material=C length=2.5 color=1,0,0

virtualdetector Det radius=1000 color=0,1,0

place Target z=100
place Det z=200

6.6 TungstenTarget.g4bl

TungstenTarget.g4bl - 8 GeV proton beam into a tungsten target

The "default" physics list is QGSP_BERT
physics QGSP_ BERT

the beam is 8 GeV kinetic energy, the mass of a proton is 938.272 MeV/c"2
param M=938.272 KE=8000.0
param P=sqgrt ((SM+S$SKE) * ($M+S$KE) -$SM* S$M)

a zero-emittance beam is unrealistic, but simple; it easily fits through
a 1 mm hole in the backward detector. It emanates from z=0.

beam gaussian meanMomentum=$P nEvents=1000 particle=proton

the target is a tungsten rod 20 cm long and 1 cm in diameter; make it red

cylinder Target outerRadius=5 length=200 material=W color=1,0,0
place Target z=200

These three virtualdetector-s catch everything that comes out, except for

1/10/14 TIR G4beamline User’s Guide 105

a 1lmm hole for the incoming beam. Note the 0.5 mm clearance at each end of
the target, and the 201 mm length of the cylinder to match corners.

This virtualdetector catches what comes out of the target to the back;

note the hole for the incoming beam; make it yellow

virtualdetector DetBackward innerRadius=0.5 radius=1000 length=1 color=1,1,0
place DetBackward z=99

This virtualdetector catches what comes out of the target to the side,

one meter away; make it blue

virtualdetector DetSideways innerRadius=1000 radius=1001 length=201 color=0,0,1
place DetSideways z=200

This virtualdetector catches what comes out of the target in the forward

direction; make it green

virtualdetector DetForward radius=1000 length=1 color=0,1,0
place DetForward z=301

6.7 MICE_StageVl.g4bl

MICE StageVI.g4bl 2/5/2006 TJR
This is an old model of MICE Stage VI, as of AugO05.

Command-line parameters (optional - default as follows):
first=0 last=1000 viewer=none

NOTES:
A. dp/p = 2.5% is only 11 MeV/c, which seems WAY too small!
(old value was 75 MeV/c; tests show we need +- 17 MeV.c)

The MICE beamline is from bmdata AUG2105 (p3v3) .xls

The vacuum windows and pipes are my best GUESS -- this needs to be
properly designed. APPROXIMATION: the vacuum windows are flat.

The MICE magnetic lattice for the cooling channel is Stage VI, flip,
beta=42 cm, from UB-09-04-A-TJR (I added the column "Center 2z").

The downstream PID detector layout is from cm9 palladino pidupdate.pdf.
Except I have used a total of 1" scintillator for TOF2.

APPROXIMATION: The DecaySolenoid map is for 3.7 T, scaled to 4.172 T.
APPROXIMATION: The RF layout is from Study2, not updated.

APPROXIMATION: I have an old spreadsheet for computing the absorber
and safety window profiles.

APPROXIMATION: the outer shapes of quads and bends are wrong; but there
are no particles of interest out there, so that's OK.

APPROXIMATION: neglect the varying density of the ISIS beam over

*
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
the target.
#

#

APPROXIMATION: the ISIS vacuum and pipe do not implement ISIS at all,

1/10/14 TIR G4beamline User’s Guide 106

but are OK for our pions.
APPROXIMATION: the vacuum between Q3 and Bl is a box without any pipe

APPROXIMATION: the vacuum between Bl and DecaySolenoid is a box
without any pipe

e

command-line parameter default values
param -unset first=0 last=10000 viewer=none

Absorber material, LH2 or Vacuum
param -unset absMaterial=Vacuum

HistoScope filename from first event
param histoFile=$first histoUpdate=100000
param steppingFormat="TAG CL STEP VOL MAT PROCESS B"

#44

Beamline tune parameters, AUGO05

#44

piMomentumRef is the pion reference momentum at target

muMomentum is the muon design momentum at center of B2

muMomentumRef is the muon reference momentum at center of DecaySolenoid
(account for Eloss in vacuum window, air, and ProtonAbsorber)

slight change in B2 field and position (compared to Kevin's AUG05), due to
Eloss in air

param -unset piMomentumRef=440.42 muMomentum=255.24 muMomentumRef=266.0
param -unset DecaySolenoidCurrent=86.02

param -unset Q1=1.155989 02=-1.445 Q3=1.005937

param -unset B1=-1.41384 B1z=7918.02

param -unset B2=-0.424270 B2z=15791.47

Kevin's values: param B1=-1.413935 B2=-0.424573

param -unset Q4=-1.13004 Q05=1.477795 Q6=-0.80022

param -unset Q7=-0.98765 08=1.520426 Q9=-1.430098

param -unset DiffuserThickness=7.6

#
#
#
#

#H#
Colors
#H#

param -unset vacuumPipeColor=0.6,0.6,0.6

#H#

general definitions

#H#

param worldMaterial=Air maxStep=100.0

physics QGSP BIC

trackcuts keep=proton,pi+,mu+,e+t,e- kineticEnergyCut=30 maxTime=1000

particlecolor proton=1,0,0 pi+=0,1,0 mu+=0,0,1 plus=1,0,1 minus=1,1,0 \
neutral=0,1,1 reference=1,1,1

coil default material=Cu dR=5.0 dZ=5.0 tolerance=0.001

solenoid default color=1,1,0

Target is 1lmm wide and 10mm long: (l*cos(25*deg)+10*sin(25*deqg))/2 = 2.57
For now we assume the target dips 2mm into the ISIS beam.

sigmaP, sigmaXp, and sigma¥Yp are determined empirically to be larger than
the actual beamline acceptance.

ERg

1/10/14 TIR G4beamline User’s Guide 107

(In the beam command, sigma<0 means a flat distribution with that halfwidth.)
beam gaussian sigmaX=-2.57 sigmaY=-1.0 meanMomentum=$piMomentumRef \
particle=pi+ sigmaXp=-0.040 sigmaYp=-0.020 sigmaP=-17 \
firstEvent=$first lastEvent=$last

#44

define the beamline magnets and components

#44

virtualdetector TargetDet radius=100 length=1 material=Vacuum noSingles=1

genericquad QuadTypelV fieldLength=853.4 apertureRadius=101.5 ironRadius=381 \
ironLength=914 ironColor=0,.6,0 kill=1

Type I bend shimmed to 200 mm gap

genericbend BendTypel fieldWidth=660 fieldHeight=200 fieldLength=1038 \
ironColor=1,0,0 ironWidth=1828 ironHeight=1320 ironLength=990

PSI solenoid

coil Decay innerRadius=60.0 outerRadius=97.0 length=5000.0 maxR=60.0 \
mapFile=Magnets/DecaySolenoid

solenoid DecayS coilName=Decay current=$DecaySolenoidCurrent color=1,1,0

tubs SolenoidBody innerRadius=97.0 outerRadius=180 length=5000 kill=1 \
color=1,1,0

tubs DecayEnd innerRadius=48 outerRadius=180 length=68 material=Fe kill=1 \
color=1,1,0

invisible shield to kill junk from Bl that misses the aperture

tubs DecayShield innerRadius=180 outerRadius=1000 length=2 kill=1 \
color=invisible

the assempled DecaySolenoid

group DecaySolenoid length=5138 radius=0 material=Vacuum
place DecayShield z=-2568
place DecayEnd z=-2534

place DecayS z=0

place SolenoidBody z=0
place DecayEnd z=2534

endgroup

Proton Absorber.

material H Z=1 A=1.00794 density=0.0838

material C Z=6 A=12.011 density=2.265

material polyethylene density=0.93 C,0.856 H,0.144

50mm * cos (15 deg) = 48.29

box ProtonAbsorber width=400 height=400 length=50 material=polyethylene \
color=1,0,1

Type OC Quads - includes mirror plates

genericquad QuadTypeQC fieldLength=660 poleTipRadius=171.5 coilRadius=236 \

coilHalfwidth=57 ironRadius=700 ironLength=1046 ironColor=0,.6,0 \

kill=1

Diffuser

tubs Diffuser outerRadius=200 material=Pb length=$DiffuserThickness color=1,0,1

virtualdetector DiffuserDet radius=200 length=1

Collimator -- place twice, on beam left and right

box Collimator width=600 height=500 length=150 material=Fe color=.8,.8,.8 kill=1

##4

The beamline vacuum components

##4

GUESS: vacuum windows are 0.5mm Al, flat.

GUESS: 0.5mm Al flat isolation windows at each end of DecaySolenoid.
NOTE: vacuum3 and vacuum4 intersect Bl; this is OK as all are Vacuum.

1/10/14 TIR G4beamline User’s Guide 108

tubs ISISVacuum outerRadius=100 length=600 material=Vacuum

tubs vacuumWindow outerRadius=120 length=0.5 material=Al color=$vacuumPipeColor

tubs ISISPipe innerRadius=100 outerRadius=103 length=600 material=Al \
color=S$vacuumPipeColor

tubs vacuuml outerRadius=100 length=2143 material=Vacuum

tubs pipel innerRadius=100 outerRadius=103 length=2143 material=Al \
color=S$vacuumPipeColor

tubs vacuum2 outerRadius=100 length=486 material=Vacuum

tubs pipe2 innerRadius=100 outerRadius=103 length=486 material=Al \
color=S$vacuumPipeColor

box vacuum3 width=300 height=200 length=1643 material=Vacuum

box vacuum4 width=300 height=200 length=1745.2 material=Vacuum

#44
Lay out the beamline
#44

reference particle for manually tuning Bl, and the RF
reference referenceMomentum=$piMomentumRef particle=pi+ beamZ=0

place TargetDet 2z=152 parent=ISISVacuum

place ISISVacuum z=0

place ISISPipe z=0

place vacuumWindow z=300.25

place vacuumWindow z=399.75

place vacuuml z=1471.5

place pipel z=1471.5

place QuadTypelV rename=Q1 gradient=$Q1 z=3000
place vacuumz2 z=3700

place pipe2 z=3700

place QuadTypelV rename=Q2 gradient=$Q2 z=4400 ironColor=0,0,.6
place vacuumz2 z=5100

place pipe2 z=5100

place QuadTypelV rename=Q3 gradient=5$Q3 z=5800
place vacuum3 z=7078.5

place BendTypel rename=Bl By=$Bl z=$Blz x=200 rotation=Y30
cornerarc z=7434.2 angle=60 centerRadius=1038

place vacuumé4 z=8722.6

place vacuumWindow z=9595.45
place DecaySolenoid z=12164.7
place vacuumWindow z=14733.95

reference particle for manually tuning B2
reference referenceMomentum=SmuMomentumRef particle=mu+ beamzZ=12164.7

place ProtonAbsorber z=15070.9

place BendTypel rename=B2 By=$B2 z=$B2z x=100 rotation=Y15 fieldMaterial=Air
cornerarc z=15281.7 angle=30 centerRadius=2005.2

place Collimator z=16760 x=353
place Collimator z=16760 x=-353

place QuadTypeQC rename=Q4 gradient=$Q04 z=17361.6 fieldMaterial=Air

1/10/14 TIR G4beamline User’s Guide 109

place QuadTypeQC rename=Q5 gradient=$Q5 z=18521.6 fieldMaterial=Air
ironColor=0,0, .6

place QuadTypeQC rename=Q6 gradient=$Q06 z=19681.6 fieldMaterial=Air
place QuadTypeQC rename=Q7 gradient=$Q7 2z=22993.7 fieldMaterial=Air
place QuadTypeQC rename=Q8 gradient=$Q08 z=24153.7 fieldMaterial=Air
ironColor=0,0, .6

place QuadTypeQC rename=Q9 gradient=$Q9 z=25313.7 fieldMaterial=Air

place Diffuser z=27165.3
place DiffuserDet

NOTE - the entire cooling channel has moved upstream
End coil 1.1 upstream face is now z=27169.1

#H#4

Define and place the MICE upstream particleID elements

#H#4

material scintillator density=1.032 C,0.918 H,0.082

virtualdetector TOFO height=500 width=500 length=50.8 color=1,1,1 \
material=scintillator

virtualdetector TOF1l height=480 width=480 length=50.8 color=1,1,1 \
material=scintillator

place TOF0 z=20537.0

TOFl and TOF2 are placed with the cooling channel

material F Z=9 A=18.998 density=1.5

material C6F14 density=1.7 C,0.213 F,0.787

material Si Z=14 A=28.086 density=2.33

material O z=8 A=15.999 density=0.001

material quartz density=2.20 Si,0.467 0,0.533

box CherenkovlFront width=400 height=400 length=1 color=1,0,0 material=Al

virtualdetector Cherenkovl width=400 height=400 length=20 color=0,0,1 \
material=C6F14

box CherenkovlWindow width=400 height=400 length=2 color=0,1,0 material=quartz

box CherenkovlLight width=550 height=550 length=478 material=Air color=1,1,1

place CherenkovlFront z=20762.9

place Cherenkovl

place CherenkovlWindow

place CherenkovlLight

#44

The MICE cooling channel solenoids and IronShield

all currents give Bz>0; rotation=Y180 is used for Bz<0.

#44

TRD 09/09/2005 Table 4.1-1

coil Focus innerRadius=263 outerRadius=347 length=210 maxR=263
coil Coupl innerRadius=725 outerRadius=841 length=250 maxR=725
coil Matchl innerRadius=255 outerRadius=355 length=202 maxR=255
coil Match2 innerRadius=255 outerRadius=312 length=202 maxR=255
coil Endl innerRadius=255 outerRadius=393 length=120 maxR=255
coil Center innerRadius=255 outerRadius=305 length=1260 maxR=255
coil End2 innerRadius=255 outerRadius=404 length=120 maxR=255

TRD 09/09/2005 Flip mode, Case 1 Stage VI

solenoid Focus coilName=Focus current=113.95

solenoid Coupl coilName=Coupl current=96.21

solenoid Matchl coilName=Matchl current=56.30

solenoid Match2 coilName=Match2 current=66.79

1/10/14 TIR G4beamline User’s Guide 110

solenoid Endl coilName=Endl current=62.80

solenoid Center coilName=Center current=64.44

solenoid End2 coilName=End2 current=67.11

IronShield is the downstream magnetic shield for the detectors

tubs IronShield innerRadius=250 outerRadius=750 length=100 material=Fe \
color=0.7,0.7,0.7

##4
The MICE Trackers
##4
APPROXIMATION: each SciFi station is approximated as 2.0mm scintillator
GUESS: the vacuum window is I1mm Al, flat; placed in the center of End2.
APPROXIMATION: the tracker pipe ends at the vacuum window (make room for
the Diffuser)
virtualdetector SciFi radius=150 length=2.0 color=0,0,1 material=scintillator
tubs TrackerPipe innerRadius=200 outerRadius=255 length=2491 material=Al \
kill=1] color=1,0,1
tubs TrackerWindow outerRadius=200 length=1.0 material=Al color=1,0,0
group Trackerl material=Vacuum length=2491 radius=0
place TrackerWindow z=-1245.0
place SciFi rename=Trackerla z=-1045.5
place SciFi rename=Trackerlb z=-595.5
place SciFi rename=Trackerlc z=-245.5
place SciFi rename=Trackerld z=-45.5
place TrackerPipe z=0
place SciFi rename=Trackerle z=54.5
endgroup
group Tracker2 material=Vacuum length=2491 radius=0
place SciFi rename=Tracker2a z=-54.5
place TrackerPipe z=0
place SciFi rename=Tracker2b z=45.5
place SciFi rename=Tracker2c z=245.5
place SciFi rename=Tracker2d z=595.5
place SciFi rename=Tracker2e z=1045.5
place TrackerWindow z=1245.0
endgroup

##4

The MICE Absorbers

##4

APPROXIMATION: I used an old spreadsheet to compute window profiles

absorber Abs absWindow=Windows/abs300 safetyWindow=Windows/safe320 \
insideLength=350 absMaterial=S$absMaterial windowMaterial=Al \
safetyDistance=133 color=0,1,0

tubs AFCPipe innerRadius=160 outerRadius=263 length=850 material=Al \
color=$vacuumPipeColor

group Absorber radius=0 material=Vacuum length=850

place Abs rename='"' z=0
place AFCPipe z=0
endgroup
#44
The MICE RF Linacs
#44
APPROXIMATION: the drawings in the Mar28 TRD gave no dimensions, so these
#H# are Study2 RF cavities.

APPROXIMATION: the RF windows are flat, 0.38mm thick.

1/10/14 TIR G4beamline User’s Guide 111

#pillbox Pbox maxGradient=16 frequency=0.20125 innerLength=430 pipeThick=3 \
wallThick=3 irisRadius=210 collarRadialThick=25 collarThick=12.5 \

winlThick=0.38 winlOuterRadius=140 win2Thick=0.38 winMat=Be \

phaseAcc=40 skinDepth=0.1 timingTolerance=0.001 \

tuneEnd=RF2Cl goalFactor=1.0 initialStep=0.5 tuneTolerance=0.001

#

for

pillbox Pbox maxGradient=0 frequency=0 innerLength=430 pipeThick=3 \
wallThick=3 irisRadius=210 collarRadialThick=25 collarThick=12.5 \
winlThick=0.38 winlOuterRadius=140 win2Thick=0.38 winMat=Be \

empty absorber and no RF

skinDepth=0.1 innerRadius=608.5

tubs RFPipe innerRadius=700 outerRadius=725 length=1900 material=Al \

color=$vacuumPipeColor

group

RF radius=0 material=Vacuum length=1900

place Pbox z=-690 rename=Cl

place Pbox z=-230 rename=C2

place RFPipe z=0

place Pbox z=230 rename=C3

place Pbox z=690 rename=C4
endgroup

4

Cooling channel vacuum components

4

tubs vacuumPipeA innerRadius=200 outerRadius=255 length=285 material=Al \

color=$vacuumPipeColor

group

vacuumA radius=0 material=Vacuum

place vacuumPipeA
endgroup

4

Lay out the MICE cooling channel

(use z=0 for the center of Absorber2,

4

AUGO5 value, Cooling Channel TRD 09/09/2005

place

place
place

place
place
place
place
place
place
place
place
place
place
place
place
place

place

place

OFFSET z=33180.1

TOF1l z=-6611
IronShield z=-64061

End2 z=-5951 rotation=Y180 current=0
Center z=-5201 rotation=Y180 current=0
Trackerl z=-4705.5

Endl z=-4451 rotation=Y180

Match2 z=-4052 rotation=Y180

Matchl z=-3611 rotation=Y180

vacuumA z=-3317.5

Focus z=-2955 rotation=Y180

Absorber rename=Absl z=-2750

Focus z=-2545

Coupl z=-1375

RF rename=RF1 z=-1375

Focus z=-205

Absorber rename=Abs2 z=0

Focus z=205 rotation=Y180

1/10/14 TIR G4beamline User’s Guide

TrackerlEnd2 US edge is at z=29486.0)

112

place RF rename=RF2 z=1375

place Coupl z=1375 rotation=Y180
place Focus z=2545 rotation=Y180
place Absorber rename=Abs3 z=2750
place Focus z=2955

place vacuumA z=3317.5

place Matchl z=3611

place Match2 z=4052

place Endl z=4451

place Tracker2 z=4705.5

place Center z=5201 current=0
place End2 z=5951 current=0

place IronShield z=6461

#44

Downstream PID counters

(OFFSET for cooling channel still applies; DS edge of Tracker2End2=6011)

#44

APPROXIMATION: the octagonal Cherenkov2 is approximated as a circle

APPROXIMATION: an additional window is used in place of the mirror

virtualdetector TOF2 height=480 width=480 length=50.8 color=1,1,1 \
material=scintillator

material aerogel density=0.2 $51,0.292 0,0.666 H,0.042

tubs Cherenkov2Window outerRadius=400 length=1.0 material=Al color=0,0,1

virtualdetector Cherenkov?2 radius=425 length=100 material=aerogel color=0,0,1

tubs Cherenkov2Light outerRadius=640 length=367 material=Air color=1,1,1

material calorimeter density=3.7 Pb,0.85 scintillator,0.15

virtualdetector Calorimeter width=1200 height=1200 length=160 \
material=calorimeter color=0,1,1

place TOF2 z=6586.4

place Cherenkov2Window z=6710.5

place Cherenkov2

place Cherenkov2Light

This Cherenkov2Window is standing in for the mirror, so there are 2
place Cherenkov2Window

place Cherenkov2Window

place Calorimeter z=7308

#44

an NTuple for good particles

#44

ntuple GoodParticle category=NTuples \

detectors=TargetDet, TOF0, Cherenkovl, TOFl, SciFi, TOF2, Cherenkov2,Calorimeter

6.8 Idealized_g-2.g4bl

Idealized g-2.g4bl

This is an idealized simulation of the BNL g-2 experiment:

3.094 GeV/c mu- are started with polarization=(0,0,1) in a
perfectly uniform B field of 1.4513 T; their decay electrons

are put into an NTuple for histogramming. This requires hundreds
of millions of events, so you probably need to run it on a grid

P

1/10/14 TIR G4beamline User’s Guide

113

or a cluster. the .root and .out files are named for $first (may
need to be changed on a grid).

param -unset first=0 1last=999999

set name of .root and .out files
param histoFile=$first
output S$histoFile.out

set steppingFormat to include the polarization
param steppingFormat=GLOBAL, P,KE, POLAR,B

physics includes spin tracking; keep only mu- and e-
physics QGSP BERT spinTracking=1
trackcuts keep=mu-,e-

beam is polarized.
beam gaussian polarization=0,0,1 particle=mu- meanMomentum=3094 \
firstEvent=$first lastEvent=$last

NTuple for electrons
newparticlentuple Electrons require=PDGid==11 kill=1

B is used to expand the world to 100 meters square (more than enough)
box B height=1 width=100000 length=100000
place B z=0 y=500

F gives the field.
fieldexpr F height=1000 width=100000 length=100000 By=1.4513
place F z=0

6.9 SpaceCharge.g4bl

SpaceCharge.gdbl

The beamline is a quad triplet tuned to do parallel to point focusing
at z=6000mm.

To plot sigmaX and -sigma¥Y using gnuplot, do:
plot "profile.txt" using 1:4 with lines, \
"profile.txt" using 1:(-$6) with lines
HistoRoot can also be used to plot profile.txt.

Note the simulation ends when tracks start leaving the world, making
the number of tracks in the bunch drop below 95% of the initial
number, around meanZ=10000.

NOTE: the spacecharge command currently has the limitation that the
reference particle must be parallel to the z axis. The spacechargelw
command uses no reference and has no such limitation, but is
computationally limited to about 1,000 macro-particles.

nMP=5000 takes ~ 3 min on my Mac, gives same plot as nMP=50000.

The default deltaT is 0.100 ns, which may well be too large for
practical use.

S oo e S SR SR S o SR Sk oE S SR S e e Sk oE o SR e e

1/10/14 TIR G4beamline User’s Guide 114

At the default P=200, the effects of space charge start to become
visible around totalCharge=1E10. At 1E12 the focus 1is very washed out,
and at 1E13 is gone. The default bunch has sigmaX=sigmaY=sigmaZ=20mm.

The default quadrupole strengths are scaled with momentum, so the
focus remains at z=6000 independent of P.

These parameters can be given on the command line to explore variations:
Bunch parameters:

nMp # macro particles

totalCharge total charge of the bunch (number of e+).

(totalCharge=1 makes spacecharge negligible)

Beam parameters:

P momentum of the reference and bunch center

sigmaP sigmaP of the initial beam

sigmaX, sigma¥, sigmaZz, sigmaXp, sigma¥Yp - other beam parameters
spacecharge parameters:

deltaT time step (ns)

nGrid # points in each dimension of the grid

nApprox # points in each dimension of the approximation
maxBeta max beta in reference frome for bunch

percentile ©percentile of charge distribution used for
grid sizing
verbose verbose print control

S oS S S SR SR S e SE b S SR o e e Sk oE o o e e 3E o o o

param -unset P=200 sigmaP=0 sigmaX=20 sigma¥=20 sigmazZ=20 sigmaXp=0 sigma¥Yp=0
param -unset deltaT=0.100 nGrid=65 nApprox=7 maxBeta=0.1l percentile=99 verbose=0
param -unset nMP=5000 totalCharge=1l

parallel-to-point focus at z=6000, determined using triplet.sh, scaled by P:
param -unset QF=2.79310*$P/200 QD=-4.95221*$P/200

physics QGSP BERT disable=Decay

spacecharge deltaT=0.100 charge=$totalCharge/$nMP dx=3*$sigmaX dy=3*$sigma¥Y \
dz=3*$sigmaz verbose=0 deltaT=$deltaT nx=$nGrid ny=$nGrid nz=$nGrid \
NXAPProx=$nApprox NyApprox=S$nApprox nzApprox=$nApprox maxBeta=S$maxBeta \
percentile=$percentile verbose=$verbose

collective

param worldMaterial=Vacuum

beam gaussian particle=mu+ nEvents=$nMP meanMomentum=S$P sigmaP=$sigmaP \
sigmaX=$sigmaX sigmaY¥=S$sigma¥ sigmazZ=$sigmaZ sigmaXp=$sigmaXp sigma¥Yp=$sigma¥p
reference particle=mu+ referenceMomentum=$P

genericquad Quad fieldLength=100 ironLength=100 apertureRadius=100 \
ironRadius=200 kill=1
box Box height=50 width=50 length=1

place Box z=0 rename=Beam color=0,1,0

place Quad z=2000 rename=Q1 gradient=S$QF
place Quad z=3000 rename=Q2 gradient=$QD
place Quad z=4000 rename=Q3 gradient=$QF
place Box z=10000 rename=End color=1,0,0

profile file=profile.txt particle=mu+ zloop=0.01:10000:100

1/10/14 TIR G4beamline User’s Guide 115

6.10 SampleMovie.g4bl

* SampleMovie.g4bl

*

* Just like Examplel.g4bl but with movie command added

*

* Simple example g4beamline input file:

* a 200 MeV mut+ Gaussian beam is tracked through l-meter drift
* spaces into four detectors

movie

QOGSP is the "default" physics use-case for High Energy Physics
but QGSP BERT is better for low-energy simulations
physics QGSP_ BERT

the beam is nominally headed in the +Z direction

beam gaussian particle=mu+ nEvents=1000 beamZ=0.0 \
sigmaX=10.0 sigmaY=10.0 sigmaXp=0.100 sigmaYp=0.100 \
meanMomentum=200.0 sigmaP=4.0 meanT=0.0 sigmaT=0.0

a reference particle
reference particle=mu+ referenceMomentum=200

BeamVis just shows where the beam comes from
box BeamVis width=100.0 height=100.0 length=0.1 material=Vacuum color=1,0,0
place BeamVis z=0

define the detector
virtualdetector Det radius=1000.0 color=0,1,0

place four detectors, putting their number into their names
place Det z=1000.0 rename=Det#
place Det z=2000.0 rename=Det#
place Det z=3000.0 rename=Det#
place Det z=4000.0 rename=Det#

6.11 Movie.in

Movie.in - input file to g4blmovie command
for SampleMovie.gd4bl with movie command -- outputs a Flash movie
setup outputFile=SampleMovie.swf tMin=0.001 tMax=18 duration=10

e+=red, mut=blue, others=gray (neutrtinos)
particle -11=#FF0000 -13=#0000FF 0=#808080

plot filename=g4beamline.root xMin=-800 xMax=800 yMin=-800 yMax=800 x=x y=y
plot xMin=-200 xMax=200 yMin=-200 yMax=50 x=z y=Pz

row

plot xMin=-800 xMax=800 yMin=-50 yMax=50 x=x y=Px

plot xMin=-800 xMax=800 yMin=-50 yMax=50 x=y y=Py

row height=0.2

sideview xMin=-100 xMax=5000 yMin=-2000 yMax=2000 markerSize=2.0
row height=0.1

time textHeight=12

space title=Example6 textHeight=12

position textHeight=12

1/10/14 TIR G4beamline User’s Guide 116

6.12triplet.sh — tune a quad triplet for point-to-point focus

This shell script requires the bash shell and the following programs:
* Gbeamline (http://gdbeamline.muonsinc.com)
* gminuit (http://muonsinc.com ComputerPrograms/gminuit)
* gnuplot (available from your Linux distribution or http://sourceforge.net)
* tclsh and wish (available from your Linux distribution)

The gminuit program is configured to have the following parameters: P, dP, sigmaXp, sigmaYp, QF,
QD. The first four determine the initial beam (which emanates from a point), and the last two determine
the gradients of the three quads. The Chisquared to be minimized is (sigmaX”2+sigmaY”2) evaluated at
Z=6000, so the minimum Chisquared will be a point focus. Because of the front-to-back symmetry, the
two horizontal-focusing quads have the same gradient.

Gminuit presents the user with a window containing sliders and edit-boxes for the parameters, plus
buttons to execute the script once and to fit the parameters (see the gminuit documentation for details):

X gminuit \
@ Script retums the value to minimize
Script File: /ftmp/script 29778 M Param=value Script writes the above plotfile.
plot files and compute their Chi-squared
Param: P dP sigmaXx sigmayY sigmaxp sigmaYp QF QD
Value: |139 3935 0.0 0.0 0.0 0.0065 0.0065 5.375 -7.235
Min: 100.0 0.0 0.0 0.0 0.0 0.0 -15 -15
Max: 1000.0 100.0 100 100 0.1 0.1 15 15
FitStep: 0 0 0 0 0 0 0.5 0.5
NoLimit NoLimit NoLimit NoLimit NoLimit NoLimit NoLimit NoLimit
Ait: Limited Limited Limited Limited Limited Limited ¢ Limited ¢ Limited
¢ Fixed ¢ Fixed ¢ Fixed ¢ Fixed ¢ Fixed ¢ Fixed Fixed Fixed
Execute Fit Value: Save Current Configuration

The script run by gminuit computes the Chisquared to be minimized, and also plots the profile of the
beam (as traditional, 3*sigmaX is on top and -3*sigmaY is below the axis, with the apertures of the

quads plotted in green):

1/10/14 TIR G4beamline User’s Guide 117

v Gnuplot EE x

' {J {J {J i Z*zigmak -
100 F -3*sigmaY d

50 d
]
-50 F -

o I | |

0 1000 2000 3000 4000 5000 6000

- -

In practice, a human user can find the best tune more quickly than the minuit minimization engine. This
is primarily because the human can watch the effect of parameter changes on the entire profile plot, and
use experience and knowledge that minuit does not have.

6.13 emittancematch.sh — attempt to match a quad triplet into a solenoid

This script is similar to triplet.sh, except it adds a solenoid after the quad triplet. This is incomplete, but
demonstrates the gnuplot commands necessary to plot the profile, emittance, and beta of the beam.

1/10/14 TIR G4beamline User’s Guide 118

7 Tips and Techniques

These generally useful tips and techniques have been found useful while using G4beamline to simulate
several dozen different systems, including suggestions from numerous users.

7.1 Getting Help on Using G4beamline

The primary means of obtaining assistance in using G4beamline is our user’s forum,
http://www.muonsinc.com/tiki-view_forum.php?forumld=1. You can also send email to
mailto:inquiries@muonsinc.com, or to Tom Roberts, the primary author of G4beamline
mailto:tjrob@muonsinc.com.

Some questions are more about Geant4 than G4beamline. In particular, detailed questions about physics
processes and/or physics lists are in this category. For such questions, you can use the previous
paragraph, but we will most likely redirect you to the Geant4 forums:
http://hypernews.slac.stanford.edu/HyperNews/geant4/cindex. It’s quite appropriate for users of
G4beamline to join the Geant4 forums as well.

7.2 Reporting Bugs in G4beamline

The primary means of reporting bugs in G4beamline is our user’s forum,
http://www.muonsinc.com/tiki-view_forum.php?forumld=1. You can also send email to Tom Roberts,
the primary author of G4beamline mailto:tjrob@muonsinc.com.

7.3 Requesting New Features in G4beamline

The primary means of requesting new features in G4beamline is our user’s forum,
http://www.muonsinc.com/tiki-view_forum.php?forumld=1. You can also send email to Tom Roberts,
the primary author of G4beamline mailto:tjrob@muonsinc.com.

7.4 Getting Help on Individual G4beamline Commands

The source code of each G4beamline command includes help text for the command and its individual
arguments; it is printed by the selp command. This text is the primary source of information about the
command, and is copied into this User’s Guide and into the help text of the G4beamline GUI. You can
obtain help on each command in several ways:
1. From a command line type “g4b/ — on one line, and then “help command” on a new line in
response to the cmd: prompt.
2. Run the G4beamline GUI, and if the help text is not displayed, push the Help button. You can
then scroll around and find the desired command.
3. Look in section 5 of this document.
Note that the definitive source is number 1, so if there is a question about changes (e.g. in different
versions of G4beamline), that is the method to use. In particular, the help text in the GUI and in this
document can get out of date.

1/10/14 TIR G4beamline User’s Guide 119

7.5 In what Directory should | Work?

In general, it is a poor idea to put your simulations inside the G4beamline install directory — that makes
it difficult to update G4beamline; similarly, the G4beamlineExamples directory is not a good place to
work (except to run the examples). It is usually a good idea to work in your SHOME directory, and to
make a separate directory for each simulation; this is especially true if you are using the GUI. I have a
single directory in my SHOME called g4work under which I create a new directory for each new
simulation, using a descriptive name.

7.6 Files Common to Multiple Simulations

Many G4beamline commands reference additional files. In some cases there will be a collection of
different simulations that share common files, such as field maps, window profiles, etc. It may be
convenient to put these files into a single directory called “Common” at the same level as the simulation
directories. Then in each input file, reference these common files as “../Common/filename.ext”.

7.7 Basic Execution in a Command-Line Environment

Most modern desktop environments permit the user to have multiple command-line windows open
simultaneously. This can significantly improve your productivity while developing a new G4beamline
simulation, or optimizing parameters of an existing one. Multiple windows are not necessary, and what I
describe in parallel can be performed sequentially in a single command-line window; it is noticeably
more efficient with multiple windows, however.

Usually when developing a new simulation, or optimizing the parameters or configuration of a
simulation, one wants to see histograms or plots from each run before tweaking the input.file and
running another test run. The idea is to run enough events to get statistically meaningful plots, but to not
take too long so one can iterate rapidly through choices. For a simple system being simulated, I can
often perform the loop of “edit, simulate, histogram, choose new values” in less than a minute per step. |
do this with four windows open simultaneously, all running bash in the same directory:
W1. A command-line window in which I run G4beamline simulations.
W2. A command-line window in which I run “g4b/ — and to which I type “help command”
whenever I need help on a command or its arguments.
W3. A command-line window in which I edit my current input.file. I happen to use vi, but you
should use the editor you are most familiar with.
W4. A command-line window in which I run historoot. This can be window 1 if historoot is put in
the background.

It’s best to use a monitor that is big enough to see all four windows at once, but it works well if you can
see all of one and parts of the others, so you can rapidly switch windows with a mouse click. The basic
sequence is:

1. W3 (editor): If it’s not open already, open input.file in the editor and prepare the next version to
try. Use W2 (help) for help if necessary. When finished, save the file to disk without exiting the
editor.

2. W1 (command prompt): run “g4b/ input.file” and wait for it to finish. If there was an error, go
back to step 1.

1/10/14 TIR G4beamline User’s Guide 120

3. W4 (historoot): do File/OpenFile and open g4beamline.root (or whatever file the simulation
wrote). Select the desired NTuple and set the expressions to plot (if necessary — the plot
configuration will remain from the previous iteration), and then push CreatePlot.

4. W4 (historoot): do File/CloseAllFiles. This is important to avoid confusion. On Windows this is
essential, because if historoot has the Root file open, g4beamline won’t be able to write to it and
the next step 2 will fail for that reason.

5. Examine the plot and determine what to do next. Go back to step 1.

By using separate command-line windows, the command-line history in each will permit you to avoid
re-typing commands, reducing typos and speeding things up considerably. By keeping historoot and the
editor open, you avoid the delay of re-configuring them each time.

When constructing a new geometry, plots are usually not needed, and the GUI is better suited to
viewing the system easily. So in window 1 I type “g4blgui input.file” and push its Run button instead of
running g4bl directly (with the best viewer selected). W4 (historoot) is not used. I find that the GUI is
easier to use than the command-line when using visualization (though it works fine to type “g4bl
input.file viewer=>best”, and then “/run/beamOn 10” to the Geant4 Idle> prompt).

7.8 Basic Execution in a GUI Environment

Execution in a GUI environment, such as Windows, is similar to that in a command-line environment
discussed above. The basic idea is to keep windows open so you don’t constantly have to re-configure
them.

Usually when developing a new simulation, or optimizing the parameters or configuration of a
simulation, one wants to see histograms or plots from each run before tweaking the input.file and
running another test run. The idea is to run enough events to get statistically meaningful plots, but to not
take too long so one can iterate rapidly through choices. For a simple system being simulated, I can
often perform the loop of “edit, simulate, histogram, choose new values” in less than a minute per step. |
do this with four windows open simultaneously, all in the same directory:

1. The G4beamline GUI window.

2. (Optional) The G4beamline User’s Guide in a PDF viewer. A PDF viewer makes it easier to scan

the text for command names. Can be omitted and the help text of W1 can be used instead.
3. An editor window to edit the current input.file.
4. The historoot window.

It’s best to use a monitor that is big enough to see all four windows at once, but it works well if you can
see all of one and parts of the others, so you can rapidly switch windows with a mouse click. The basic
sequence is:

1. W3 (editor): If it’s not open already, open input.file in the editor and prepare the next version to
try. Use W2 (help) for help if necessary. When finished, save the file to disk without exiting the
editor.

2. W1 (G4beamline GUI): If input.file is not already selected, do so with the Browse button. Push
the Run button to run the simulation. If there was an error, go back to step 1.

1/10/14 TIR G4beamline User’s Guide 121

3. W4 (historoot): do File/OpenFile and open g4beamline.root (or whatever file the simulation
wrote). Select the desired NTuple and push CreatePlot (the plot configuration will remain from
the previous iteration).

4. W4 (historoot): do File/CloseAllFiles. This is important to avoid confusion. On Windows this is
essential, because if historoot has the .root file open, g4beamline won’t be able to write to it and
the next step 2 will fail for that reason.

5. Examine the plot and determine what to do next. Go back to step 1.

7.9 Putting Shielding into a Simulation

G4beamline is a realistic simulation program, and just like a real beamline, one must provide
appropriate shielding. While obviously there are no radiation issues in a simulation, it is necessary to
provide shielding that is sufficient to prevent particles from traveling in unexpected places. This is
particularly troublesome for secondary particles from decays and interactions, as they often have
sufficient transverse momentum to quickly leave many beamline apertures, and even get outside the
outer dimensions of magnets. Particles that go in unexpected places and directions can confuse plots and
histograms, and can waste CPU time on irrelevant particles.

Probably the best and simplest approach is to use the radiusCut argument to the start, corner, and
cornerarc commands. This puts a virtual cylinder around the centerline of the beamline, killing all
particles that exceed the current radiusCut. You may need to use an unusually large radiusCut inside a
bending magnet paired with a cornerarc, so be sure to check this visually. If everything within the
radiusCut is either the beam aperture or elements with kill=1, then this will ensure that unusual paths
outside the nominal beam aperture only extend between elements, which is usually sufficient. Make sure
the elements fill the radiusCut, or particles could go around them. Note that a corner without object or
rotation can be used to change the radiusCut at a specified value of z (centerline coordinates).

Another common approach is to use the kill=1 argument to bending magnets, quadrupole magnets, beam
pipes, etc. This makes them kill any particles that hit their solid parts, providing shielding for many
situations. You can add specific objects just for shielding, such as a box, cylinder, or tubs. If you enclose
the entire beamline with elements and pipes having kill=1, this is probably sufficient.

In many cases, the beam pipes are not of interest in a simulation, and putting them in is often more effort
than it is worth. Then you must take care that particles do not take unintended paths. For instance, it is
rather common for a particle to take a “shortcut” around a bending magnet, so be sure to check for this.
Rings are obviously subject to this. Shielding can be any element with kill=1, most often box or tubs
(the latter is particularly convenient as it can be given a hole for the intended beam); it is often
convenient to set color=invisible, but don’t do that until you have looked at it to know it is appropriately
sized and placed. A tubs of any radius, a length of 0.01 mm or more, and with kil/=1, is a perfect shield
(i.e. kills every particle that hits it).

If you have varying magnetic fields, sometimes they create a trap that can store particles for a long time

(1 microsecond is a long time). These are usually uninteresting, but can become CPU hogs. Using the
maxTime argument to the trackcuts command can reduce their effect.

1/10/14 TIR G4beamline User’s Guide 122

An exception is a Neutrino Factory decay ring, in which muons are stored, but the desired beam is
neutrinos. The difficulty is that the far detector may be very far away, which makes the World be quite
large, and tracking non-neutrino particles is wasteful. The best solution is to surround the storage ring
with beam pipes and magnets having a special material that kills all particles except neutrinos. As the
neutrinos spread out, and ones that miss the far detector are uninteresting, one can separate the source
and far detector by a cylinder with material=Rock, and surround it with a thin fube with kill=1.

7.10How to Debug a Simulation

An important debugging aid is the geometry test performed by G4beamline. The results appear in the
output just before tracking. In the real world, two objects cannot occupy the same space; the simulated
world does not have this restriction, and input-file errors can generate unphysical and invalid overlaps.
The Geant4 optimization of tracking requires a strict hierarchical arrangement of volumes. Usually any
geometry errors listed should be corrected in your input file before believing the simulation results; in
some cases this is difficult or impossible, and some exceptions are listed in section 8.2 on Advanced
Topics.

The most common debugging technique is to add steppingVerbose=1 to the command line (or the
Parameters field of the GUI). This causes G4beamline to print (to stdout) the track variables at every
step. That usually lets you figure out what is going wrong. Note that by setting steppingFormat you can
control what track variables are printed (see the help for details) — this can be very useful when
debugging E and B fields, or spinTracking. In most cases it is best to widen your display’s window
before running, so lines are not wrapped — 140 columns is usually sufficient.

Sometimes the problems are subtle, and only rare events look crazy. If you can select those “crazy”
events with sliders in historoot, then you can set its EventID field to cause it to write the histo_event.txt
file. You can then check the HistoRootEvents checkbox in the GUI, or put an eventcuts command into
your input.file. Running with a viewer will then permit you to visualize just the “crazy” events — seeing
them will often let you figure out what’s wrong.

Note that G4beamline simulations are quite realistic. This means that pions and muons will decay,
particles will interact in material objects, and tracks will propagate wherever they can go (even if you
don’t expect it). Decay neutrinos can look “crazy” if you’re not expecting them (so cut on PDGid in the
plots, or eliminate them at the source with a trackcuts in your input.file). You may be surprised at the
delta-rays (low energy electrons) produced in vacuum windows and other materials (eliminate them with
a trackcuts command with kineticEnergyCut=1 or higher, or perhaps kill=e-). Tracks can occasionally
go in the most amazing places, and you need to install shielding just as in a real accelerator (use the
radiusCut as described above, or add a box or tubs with kill=1 and place it appropriately; when complete
you can use color=invisible to avoid cluttering your visualizations). It is often appropriate to surround
the beam line with beam pipes having kill=1 — this avoids spending CPU time on unwanted tracks, and
prevents them from taking “shortcuts” and re-appearing as crazy events in plots; add ki//=1 to quads and
bends, etc.

In my experience, the most common errors in G4beamline simulations and interpreting results are:

1. Failure to cut on PDGid in plots and histograms, and thus confusing other particles for the
desired ones.

1/10/14 TIR G4beamline User’s Guide 123

2. Failure to put shielding in appropriate places and thus having particles go in unexpected places,
causing “crazy” events in plots and other confusion.

3. Mistakes in the input file that cause invalid overlaps of objects.
4. Mistakes in the input file that unintentionally omit objects or put them in the wrong place.
5. Inappropriate values of tracking parameters (see section 3) that cause Geant4 to optimize

tracking in an unsuitable or insufficiently accurate manner.

7.11 Geant4 Commands

Geant4 has an internal command processor with a large number of commands. For the most part,
G4beamline users don’t need to use these commands, as G4beamline controls all aspects of the
simulation. Nevertheless, there are situations for which a user might want to issue a Geant4 command.
There are two rather different ways to do this:
1. Simply put the Geant4 command into the input.file, putting its initial “/”” in column 1.
Such commands are issued when they are read — that happens before the system is constructed,
and for many commands that is too early.
2. Use the g4ui command.
The when argument controls when the command is issued, and all values are after the system is
constructed.

The Geant4 command interpreter is quirky, but there is a way to obtain a list of all its commands:
/control/manual. This command can use either method above.

The most common reason to issue a Geant4 command is to set some verbose level, for debugging or
investigating some aspect of Geant4 (most especially its physics processes). G4beamline sets all verbose
levels to O initially. Here is the list of commands that G4beamline runs to do that:

/control/verbose 0

/run/verbose 0

/event/verbose 0

/tracking/verbose 0

/hits/verbose 0

/material/verbose 0

/process/setVerbose 0 all

/process/verbose 0

/process/eLoss/verbose 0

Another reason to use a Geant4 command is to control a viewer. Use “g4ui when=4" for that. The
selected viewer’s initialization commands (from viewer.def) will be executed before such commands.

7.120btaining Plots and Histograms

There are a number of different ways to generate plots and histograms from G4beamline output files. I
generally find HistoRoot to be most convenient, but each user should use the method they are most
comfortable with. Both HistoRoot and PAW can fit functions to histograms or plots; excel and some
other spreadsheets can do so, perhaps with more overhead.

1/10/14 TIR G4beamline User’s Guide 124

General Remarks

In most cases, you must cut on PDGid when generating a plot or histogram (PDGid is the Particle Data
Group’s ID for the particle of a track, so this is selecting the type of particle to plot). G4beamline
simulations are realistic, and particles will decay and interact, generating secondary particles. Without
such a cut, secondary particles can greatly confuse the interpretation of a plot. HistoRoot has a specific
feature to display the particle types: put “PDGid” into the “Particle Type” field, and whenever the
NTuple is scanned to generate the plot, a list of the PDGid-s contained within the slider cuts will be
printed, with names for common particles.

To display a bundle of tracks, put “trace nTrace=100 format=ascii oneNTuple=1" into your input.file,
and then use gnuplot to plot the Al/Tracks.txt file that G4beamline wrote. gnuplot omits the back-trace
line between tracks because the frace command puts a blank line between tracks, specifically for this.
gnuplot is available for Linux as part of the distribution, for Mac OS via Fink, and for Windows via
http://www.gnuplot.info/ .

HistoRoot

HistoRoot requires Root to be installed, and for best results, install the version of Root available from
http://historoot.muonsinc.com. By default, all NTuples generated by G4beamline are placed into a single
Root file. Note, however, that HistoRoot can also read the ASCII NTuple files written by G4beamline
(and other programs — see the HistoRoot Help for the file formats accepted). Generating plots and
histograms is straightforward, and the help for HistoRoot should permit you to get started right away.
You can quickly and easily plot arbitrary expressions of the NTuple’s fields, with cuts applied based on
expressions; there are four sliders which implement cuts that affect the plot in real time. For more
complicated analyses (e.g. computing masses of multi-particle states), Root can be used as an analysis
platform; this is advanced usage and is beyond the scope of this tip.

Gnuplot

Gnuplot can directly read the ASCII NTuples written by G4beamline (add format=ascii to the
command). Note that Gnuplot does not generate histograms; you’ll have to use another program to do
that. Gnuplot is especially good at displaying multiple trajectories from “trace format=ascii
oneNtuple=1". gnuplot is available for Linux as part of the distribution, for Mac OS via Fink, and for
Windows via http://www.gnuplot.info/ .

Excel and other Spreadsheet Programs

Excel and most other spreadsheet programs can read the ASCII NTuples written by G4beamline (add
format=ascii to the command). Each line is a row of the NTuple with tabs separating the columns; the
first 2-3 lines give comments, column names, and column units (optional).

PAW
PAW can read the ASCII NTuples written by G4beamline (add format=ascii to the command), possibly
after a format conversion.

7.13 Obtaining Pictures of the System and Events

G4beamline is a complicated and flexible program, and like all such programs it is subject to “garbage
in, garbage out”. So it is important to check and verify that your input.file actually represents the

1/10/14 TIR G4beamline User’s Guide 125

simulation you want, and not some other (perhaps unphysical) system. An important tool for this is the
visualization implemented by G4beamline — many errors can be found simply by looking at the system
to be simulated.

In the command-line environment, you need to have an active X-Windows environment (i.e. the
DISPLAY variable must be set to a valid display server). On Windows this is automatic; on Linux it is
automatic as long as you run X windows (i.e. bring up a GUI); on a Mac you may need to run the X11
application and use an xterm window (in Leopard and later OSs you can simply use a normal Terminal
window, as the X11 application is launched automatically when needed). Then all you need do is append
“viewer=best” to your g4b/ command, and the Openlnventor viewer will be displayed. Other viewers
can be used; get their names by using viewer=best and looking near the end of the output for a list of
supported viewers. In the command-line environment, you need to type the Geant4 command
“/run/beamOn 10” to run 10 events and display them and the system.

In the GUI environment, simply select Viewer:best. Each run will be displayed in the viewer as a single
image, so setting events/run determines how many events are shown, and selecting #runs is how many
different runs (pictures) will be made. In the Openlnventor viewer, select File/Escape to quit this image,
simulate the next run, and display its image. Other viewers can be selected by selecting and setting
Other.

To save the image into a file, some viewers have a File menu item that can save in various formats (e.g.
Openlnventor can save as PostScript). In any viewer, you can take a screenshot of the viewer window
and save it to a file:
* Windows: Ctrl-PrtScrn followed by running a program to save the Clipboard in a graphics
format (e.g. Paint)
* Linux: a program like ksnapshot
* Mac OS X: the Grab utility (menu: Capture), the Preview utility (menu: File/Grab), or type
shift-command-4 and select the desired region of the screen
Note that screenshots all save a bitmap, but for viewers that implement it the File/Save menu item can
generate a vector file that is smaller and scales better.

7.14Warning and Error messages — Which Ones can be ignored

G4beamline errors are all unified within the Geant4 G4Exception framework. This gives them a
common look, and ensures that in a MPI environment they are all tabulated in rank 0 and summarized at
the end of the job.

Errors in the input file generate an error message immediately while reading and listing the input file.
They must be fixed before the simulation will run. These are such things as syntax errors, invalid
parameter names, invalid arguments to commands, etc.

Errors and warnings generated during execution are handled by the G4Exception function; they are
printed as a 6-line message starting and ending with a row of asterisks — that makes them stand out
visually in a long printout. Those that are issued by a routine beginning with “G4” came from Geant4
code, while those issued by a routine beginning with “BL” came from G4beamline code; those that are

1/10/14 TIR G4beamline User’s Guide 126

issued by a command names are also from G4beamline code. It is important to distinguish these two
cases, as how you obtain help on them may differ.

The severity of the message is a strong indicator of whether it can be ignored, or indicates a serious
problem. Note that a Warning issued by many events probably means the simulation cannot be trusted.
Warnings on a tiny fraction of the events can probably be safely ignored (unless they are related to
specific rare events of interest). Even Errors that abort the track or event might well be ignorable if they
occur only rarely. Note that G4beamline suppresses many similar exception printouts, so look at the
Exception Summary at the end of the output to see how many actually occurred.

Errors issued by G4beamline code can be discussed in our user’s forum, http://www.muonsinc.com/tiki-
view_forum.php?forumld=1. You can also send email to mailto:inquiries@muonsinc.com, or to Tom
Roberts, the primary author of G4beamline mailto:tjrob@muonsinc.com.

Errors issued by Geant4 code can be discussed in the Geant4 forums (linked to the Geant4 home page,
http://geant4.cern.ch). You can also discuss them as in the previous paragraph (choose one method, not
both).

See also section 2.8.4 on troubleshooting visualization problems. A reasonably complete list of
G4beamline error messages is given in Appendix 7. Here are some notes on specific exceptions:

Stuck Track

If you track very low-energy tracks (< 100 eV), and have materials in your simulated world, then you
will probably see a number of “Stuck Track” exceptions that kill the track. This occurs because very low
energy tracks can get stuck on the surface, taking many extremely small steps (< 1 micron). Such tracks
would really get absorbed into the material, so killing the track is a reasonable thing to do. Such error
messages can usually be ignored, unless they dominate your simulation.

Large Primary TrackID

This exception has a specific cause and cure. Remember that tracking in Geant4 (and thus G4beamline)
will often generate secondary tracks, and these must each be assigned a TrackID. To minimize the
collision of multiple tracks within an event having identical TrackID-s, secondary tracks by default have
TrackIDs starting with 1001 and incrementing thereafter. If the input beam file has a TrackID > 1001,
then confusion can result, so this exception is issued. You could edit your beam file to not have such
large TrackID-s, or you can add the following to the beam command that reads the file:
secondaryTrackID=2001. This avoids the overlap, and thus the exception; larger values can be used if
necessary.

7.15Secondary Tracks and Particles

Unlike most accelerator physics programs, G4beamline includes particle decays and interactions of
particles with matter. This means that during a simulation new particle tracks can, and usually will, be
created. For instance, whenever the beam goes through a vacuum window, delta-rays (low-energy e")
will be produced; a beam of unstable particles will generate decay products, etc. In some simulations
such secondaries are essential (e.g. for a muon beam produced by pion decay), but in others these

1/10/14 TIR G4beamline User’s Guide 127

secondary particles are uninteresting and are merely a nuisance (as, perhaps, are the neutrinos associated
with that muon beam). G4beamline has several mechanisms to let you deal with secondaries:
* physics — doStochastics=0 will turn off all stochastic processes, which has major implications,
but this implicitly inhibits the creation of secondaries
* physics — disable=process will turn off specific physics processes
* trackcuts — killSecondaries=1 will kill all secondaries; keep=list will keep only those particles,
killing all others; kill=list will kill those particles
* particlecolor — assigns colors to different particles for the viewers

Note that when generating histograms and plots, you usually need to cut on PDGid (the Particle Data
Group’s assigned ID for the particle of the track). It is all too easy to look at a histogram, see an outlier,
and wonder what is happening — in many cases the outlier is merely a secondary track from a decay or
interaction, and is unrelated to the phenomenon of interest. So be warned.

HistoRoot has a specific feature to display the particle types: Put “PDGid” into the “Particle Type” field,
and whenever the NTuple is scanned to generate the plot, a list of the PDGid-s contained within the

slider cuts will be printed, with names for common particles.

Here is a list of common (stable) particle PDGid-s (negative for anti-particle):

PDGid Particle PDGid Particle PDGid Particle
11 e 12 Ve 13 w
14 v, 16 V. 22 Y
111 n 211 T 311 K’
321 K" 2112 n 2212 p

A much more complete list of particle IDs is in Appendix 6.

7.16 Finding Example Input Files using the XXX command

First look in the examples directory of the distribution; see section 6. There is at least one test for every
G4beamline command — look in the test directory under the G4beamline installation directory. You can
also send an inquiry our user’s forum, http://www.muonsinc.com/tiki-view _forum.php?forumld=1. You
can also send email to mailto:inquiries@muonsinc.com, or to Tom Roberts, the primary author of
G4beamline mailto:tjrob@muonsinc.com.

7.17 Parameterizing the Input File
This is a general technique applicable to many different situations.

Parameters in G4beamline are names that represent strings. Whenever $name appears in an argument to
a command, the current value of the parameter name will be substituted. Note this is not a general macro
substitution, and it only occurs in the values of command arguments. In addition, for all real- and int-
valued arguments and in the param command, argument values that are numerical expressions are
evaluated after $name substitution; the standard C math functions can be used. See section 4.3 on
expressions and section 4.3 on parameters.

1/10/14 TIR G4beamline User’s Guide 128

Parameters can be defined by the param command, on the command line, and in the Parameters: field
of the GUI. These last two methods permit different runs using the same input.file to be different. In all
cases a parameter is set with the syntax name=value, without spaces; the value can be enclosed in single-
or double-quotes to include whitespace. These examples will use the command-line interface, but the
Parameters field of the GUI can be used in the same way.

The basic idea is to use a parameter rather than hard-coding a specific value into the input.file. Usually
one wants to provide a default value for the parameter, so it is never undefined. As an example, imagine
you want to compare the effects of several different target materials, all with the same size. The

input.file could look like this:
param —unset MATERIAL=Cu

box Target material=SMATERIAL

Note the initial “param —unset” command — this provides a default value for the parameter. Commands
to run this simulation for several materials would be:

g4bl input.file MATERIAL=Cu

g4bl input.file MATERIAL=W

g4bl input.file MATERIAL=Be

Note that in the previous example the Root output file will be overwritten each time, so one must be
careful to obtain all desired output from one run before starting the next. A better input.file will use
different output files for each run:

param —unset MATERIAL=Cu

param histoFile=$MATERIAL

output ShistoFile

box Target material=SMATERIAL

The second param command sets the name of the Root output file to include the material (this command
cannot be combined with the first param command and must not have -unsef). The output command
then re-directs stdout and stderr to files “Cu.out”, “W.out”, “Be.out”, etc. It’s best to put only param
commands before the output command, so all output gets re-directed into the output file.

This can obviously be extended to as many different parameters as desired. It is useful to put them all
into the histoFile value, perhaps separated by commas.

By putting the parameter values into the output filenames, multiple runs can be executed in parallel, in
the same directory. This is especially useful on a system with multiple cores, or on a cluster or grid.

7.18 Setting Fields of Magnets

If you have a specified field for a solenoid, you need to convert that into a current (density), as that is the
argument of the solenoid command that determines the field. You can compute the ampere-turns
required, but that is both time consuming and error prone. A better way is to use the probefield
command with its input set to a file containing the global coordinates of the solenoid’s center. Just guess

1/10/14 TIR G4beamline User’s Guide 129

a value for the current and run the simulation; from the printed value you can take the appropriate ratio
and quickly determine the current required to give the desired field. You can also use the printfield
command for this.

If, instead, you have a specified current for a given magnet, then you will need the magnet’s
specifications to determine the field corresponding to that current. Except for a solenoid without iron,
there is no simple way to relate field and current. If you have a drawing of the magnet, you could in
principle construct a model of the magnet using an EM modeling tool (Tosca, Opera3D, Ansys, ...); that
is usually a major effort — the drawing probably gives a value for the integral of B dl, which should be
enough for you to compute the field.

7.19Tuning Bending Magnets

G4beamline is a realistic simulation program, and like a real beamline, the bending magnets in a
simulated beamline must be tuned for position, orientation, and field (current). To model a real beamline
that has the corners of the beam centerline marked on the floor, a corner or cornerarc command will be
used to model each corner. This implies that the corners are fixed and the bending magnet must be
positioned and tuned appropriately. The standard criterion is that a reference particle coming into the
magnet along the centerline of the beam should exit the magnet along the centerline, both measured
outside the fringe fields of the magnet. If there are solenoids or other magnets near the bending magnet
such that their fringe fields overlap, then the tuning of the bending magnet may depend on their settings.
Note that if quadrupoles are used to steer the beam, these remarks apply to them, too.

See also section 2.11 (Tuning the Beamline).

To begin, make sure you have a reference command that puts a reference particle down the centerline
into the bending magnet. This implies that if you have multiple bends in your beamline, you should start
tuning with the first bend, and proceed downstream.

The usual orientation for a rectangular bending magnet is with its front and rear faces angled at half the
total bending angle to the centerlines. It must be placed a short distance behind the corner in order that
its fringe fields are accounted for, and must be placed a bit to the outside of the bend so the two
centerlines are equidistant from the left and right sides of the aperture.

The usual orientation for a sector bending magnet is with its front and rear faces perpendicular to their
centerlines.

Other orientations are possible, and can be used to affect the vertical focusing of the bending magnet.
The beamline designer will specify the appropriate angle of the magnet relative to the centerlines.

G4beamline can automatically tune the field of a bending magnet, but cannot tune its position. So the
best approach is to put the field tuning into the input file and then tune the position manually — this
reduces a 3-parameter manual problem to two parameters, which goes much faster. Once the position is
correct for one reference momentum, other reference momenta can be handled by simply re-tuning the
field (or manually adjusting it). Here is an example for a 60-degree left bend:

Param —unset Zoffset=0 Xoffset=0

1/10/14 TIR G4beamline User’s Guide 130

tune BlField z0=1000 z1=3000 initial=-2.000 step=0.05 \
expr=Px1/Pz1 tolerance=0.000001

place Bl z=2000+S$Zoffset x=$Xoffset rotation=Y30 By=BlField

corner z=2000 angle=60
The basic idea is that the fune command will vary the value of B1Field and re-track the tune particle
from z0=1000 until it is parallel to the centerline at z1=3000, within 1 microradian (tolerance). The user
will manually vary Zoffset and Xoffset until the magnet is properly placed so that reference particle is
on the centerline at z1=3000 and is equidistant from the horizontal edges of its aperture (these are not
independent, due to the rotation of the magnet and the presence of its fringe field; both will be
reasonably close to 0, within ~200 mm or so). Note the initial value in the fune command must be close
enough so the initial tune particle actually reaches z1=3000 (i.e. does not hit any aperture beforehand).

The idea is to put “Zoffset=0 Xoffset=0 steppingVerbose=1" onto the command line (or Parameters in
the GUI), and re-run the simulation while varying their values until the reference particle is on the
centerline at z1=3000. To speed this up, it is useful to temporarily set the beam command(s) to run one
event (nEvents=1). To avoid laborious scanning of a long output file with many steps, it is useful to use
the command-line program and pipe it into grep with an appropriate pattern to select a step near or at
z=3000 (because step-lengths can vary, it may help to temporarily place an object at z=3000 and grep
for it). NOTE: be sure to look at the reference particle, and not any tune or beam particle.

First keep Xoffset=0 and vary Zoffset. You will quickly learn how changes in value relate to distance
from the centerline. This usually executes in about 3-5 seconds, and you ought to be able to find the
required value of Zoffset in a few minutes. Using the command-line history in your shell greatly speeds
this up. To tune Xoffset you must add this command to make the reference particle visible and white:
“trackcolor reference=1,1,1" (I put it just after the beam command; you can leave it in). Once you have
the value for Zoffset, then add viewer=Dbest to the end of the command and re-run it, typing
“/run/beamOn 1” to the Geant4 Idle> prompt (as indicated by the comments preceding it). In
Openlnventor, select wireframe mode (right click, DrawStyles/StillDrawStyle/wireframe). Now rotate
the image using the mouse until you can see the white reference track inside the bending magnet (ignore
the beam track(s) that are other colors); zoom in if necessary, and use a ruler or judge by eye whether or
not it is centered left-right. If it is not centered, guess how much change in Xoffset is needed. Then go
back to tuning Zoffset with this new value (no viewer).

Once you have values for Zoffset and Xoffset, edit the input.file and put them in.

If you want to handle beams with different momenta, you can parameterize the momentum and B1Field
like this (assuming you initially tuned at 200 MeV/c and B1Field for 200 MeV/c was 2.10525 Tesla):
param —-unset MOMENTUM=200
beam Gaussian meanMomentum=SMOMENTUM
reference referenceMomentum=SMOMENTUM
tune BlField ... initial=2.10525*$MOMENTUM/200

1/10/14 TIR G4beamline User’s Guide 131

7.20 Setting the Phase of RF Cavities (pillbox)

The phase of an RF cavity (pillbox) is determined by its timeOffset and timelncrement arguments. If
timeOffset is not specified it is automatically set to phaseAcc by the Tune particle.

The basic method used to set the phase: when the Tune particle enters the volume of the pillbox its track
parameters are saved and an initial value of timeOffset is estimated (based on its current velocity and the
distance to the center of the cavity). Then it is tracked to the center of the cavity and its phase is checked
(the volume is split in two to ensure the track takes a step ending in the center of the cavity). If the phase
is correct within tolerance, nothing further is done and the Tune particle continues being tracked. If the
phase is incorrect, the timeOffset value is adjusted via a simple linear solver, the current Tune particle is
killed, and a new Tune particle is generated from the saved values. This usually converges in one
iteration.

If timelncrement is nonzero, it is added to timeOffset after all tuning is complete. The Tune particle is
not re-tracked, so large values will completely confuse the reference particle. timelncrement is intended
for exploring small phase errors of the RF.

See also section 2.11 (Tuning the Beamline).

7.21Tuning the maxGradient of RF Cavities (pillbox)

When RF cavities are used, it is generally necessary to carefully tune their maxGradient so the output
beam has the desired energy or momentum. The operators of the machine arrange for this (either
manually or via an automated feedback system). In G4beamline this requires the tune command and is
done while tracking the Tune particle, usually in parallel with setting their phases (see previous section).

The tune command defines a “tune variable” and will arrange to save the Tune particle at one Z-position
(z0), track the Tune particle to a second Z-position (z1), and then evaluate an expression using track
fields. It then varies its tune variable in an attempt to make the expression evaluate to 0.0. This of course
requires that some relevant beamline elements between z0 and z1 use the tune variable to change their
behavior appropriately. In this case we’ll vary the maxGradient of all RF cavities between z0 and z1,
and use an expression at z1 that makes the Tune particle have the desired momentum, which we’ll take
as 1 GeV/c to within 1 MeV/c:
tune Grad z0=990 z1=41010 initial=10.0 step=0.5 \
expr=Pz1-1000 tolerance=0.001
pillbox Cavity maxGradient=Grad frequency=0.201 \
innerLength=400
place Cavity z=1000 copies=100
Note that z0 must come before the first Cavity is placed, and z1 must be after the last Cavity is placed, at
the location where the 1 GeV/c beam is desired.

See also section 2.11 (Tuning the Beamline).

1/10/14 TIR G4beamline User’s Guide 132

7.22 Multiple Jobs in Parallel

In many cases you will want to run multiple simulations, typically scanning one or more parameters. In
this case it is often not necessary to run multiple jobs in parallel (with or without MPI), as you can
simply run the different simulations on the available CPUs. In this case nothing special is needed, as
long as you keep the different output files from clashing (parameterizing the input file can help, section
7.17).

There certainly are situations in which multiple jobs working on a single simulation are appropriate.

There are two ways to run multiple G4beamline jobs in parallel, all working on a single simulation:
1. Manually or via scripts
2. Via the Message Passing Interface (MPI)

7.22.1 Manually or via Scripts

G4beamline is a realistic simulation program, and runs considerably slower than many accelerator
simulation programs. While simple simulations can run as fast as ~1000 events per second, a moderately
complicated system might run ~100 events per second, and complex simulations can run less than 1
event per second. With the advent of Linux clusters and multi-core CPUs, it is now quite common to be
able to run multiple jobs in parallel. The key to doing that in G4beamline is that it always seeds the
pseudo-random number generator with the event number, just before starting to process the event. The
PRNG used comes from CLHEP [2], and has excellent properties for event numbers from 0 to
900,000,000.

These basic capabilities are needed to run multiple jobs in parallel:
1. The ability to submit multiple jobs.
This is system dependent. On a multi-core or multi-CPU system, you can simply use multiple
terminal windows or multiple GUI windows to run multiple jobs simultaneously. Be sure to keep
the jobs separate, including output files. On Linux, Mac OS, and Windows/Cygwin you can use
a single terminal window to run several jobs simultaneously “in the background™:
g4bl input.file first=1000000 last=1199999 >1000000.out &
g4bl input.file first=1200000 last=1299999 >1200000.out &
g4bl input.file first=1300000 last=1399999 >1300000.out &
On a Linux cluster or other multi-system, you will need to learn how to submit multiple “batch”
jobs.
2. The ability to assign a unique range of event numbers to each job.
Do this with parameters in your input.file. I use first and /ast, and the commands are:
param —unset first=1 last=1000
beam firstEvent=$first lastEvent=$last
3. The ability to assign a unique Root output file to each job.
Use first in the name of histoFile:
param histoFile=$first
4. The ability to combine all of the Root output files into histograms and plots.
Use HistoRoot to read all the root files, and simply select the same NTuple from each file.
HistoRoot will combine all selected NTuples into each plot.

Note that this works well up to perhaps 32 parallel jobs; above that it becomes quite cumbersome.

1/10/14 TIR G4beamline User’s Guide 133

7.22.2 Via the Message Passing Interface (MPI)

On systems that implement MPI, it can be used to speed up a simulation by a factor that is almost the
number of CPUs available. The advantage is that all outputs from the different instances are combined
into a single output (typically one Root file, one stderr, and one stdout). See section 8.5. The program
scales well up to at least 24 CPUs, and often more (depends in detail on the system being simulated and
on the computer hardware used; more complex systems will scale efficiently to more CPUs). The basic
command is:

mpirun -np 5 g4bl input.file [.. parameters]

This will run 5 instances of G4beamline cooperating on a single simulation. As one instance performs
only management tasks, it is usually appropriate to start one more instance than the number of available
CPUs. Section 8.5 has many more implementation details and suggestions.

7.23 Performing a Scan of Values of Some Parameter

It often happens that one wants to scan over the values of some parameter, looking for maximum
transmission, the desired emittance at a given location, or some other aspect of the beamline. The idea is
to parameterize the input.file so the parameter can be specified on the command line, and then either

manually scan or write a shell script to do the scan. For example:
Param —unset VALUE=1
rest of input, using S$VALUE

One can simply do this:

g4bl input.file VALUE=1.01

g4bl input.file VALUE=1.02

g4bl input.file VALUE=1.03

g4bl input.file VALUE=1.04
and keep track of the desired property. If the desired property is printed to stdout (e.g. it appears
normally, or via a printf command), one can use grep to greatly simplify the search for its value. This
method gives a lot of output, and it can be time consuming to scan it all for the desired property of
interest. So it is often better to write a short shell script to run G4beamline (with VALUE passed) and
then grep for the desired property, or otherwise compute it, and just output that one item. Often the
command history of your shell is sufficient.

One can also write a simple shell script to run the jobs in the background (see previous tip). On a 4-core
system, it is usually best to run four jobs in the background, do a wait, run four jobs in the background,
etc. In the bash shell, wait (no arguments) waits until all background jobs have completed, so this does a
reasonably good job of keeping four jobs running, but does not overload the system with too many
simultaneous jobs.

7.24Visually Scanning Events via the Command Line

The simplest way to scan events visually is to use the g4blgui program, but it can be done manually via
the command line. The Openlnventor driver (OIX) has the ability to exit the viewer and return to the

1/10/14 TIR G4beamline User’s Guide 134

Geant4 command input (File/Escape). This can be used to quickly scan events visually. To do this, first
create a text file called beamon.txt containing a large number of identical lines:

/run/beamOn 1

/run/beamOn 1

/run/beamOn 1

... many more identical lines
Then invoke gdbeamline like this:

g4bl input.file viewer=best <beamon.txt

Once the viewer appears, it will display the first event. To see the next event, select the File/Escape
menu item. This will suspend the Openlnventor viewer, and the Geant4 input routine will read the next
line of beamon.txt — that causes it to track one event and refresh the viewer with it. Just keep selecting
File/Escape to sequence through events one at a time. This is essentially what the g4blgui program does
when a viewer is selected.

7.250ptimizing the Value of Some Parameter(s)

When designing a new machine or facility, there is frequently the need to optimize some parameters.
The program gminuit is available for this, and interfaces well to G4beamline (and to other programs).
Download it from http://muonsinc.com in the Computer Programs link at the left.

The basic idea is to write the input.file to have command-line parameters for the parameters to be
optimized, and to configure gminuit to vary them. A shell script must be written to run G4beamline and
then compute a Chi-squared for gminuit to minimize. See the gminuit documentation for details how to
do this. Gminuit will optimize any quantity that can be computed in a shell script, and is not limited to
G4beamline.

In practice, one finds that program overheads are rather large, so there is a big advantage to requiring
fewer iterations. A human can often converge on an optimum faster (fewer iterations) than can gminuit’s
minimizer. This is especially true if the shell script can present a useful graph to the user rather than just
a single value of the Chi-squared. Note also that minimizing an integer-valued expression, such as the #
of particles transported to a given location, is difficult; in gminuit one should set the granularity of
MINUIT to 1.0 or more, and run enough particles so that the statistics are reasonably good (at least
1,000 particles, and 10,000 is better).

The examples directory of the G4beamline distribution contains #riplet.sh which tunes a quad triplet to
achieve a focus at z=6000. Note that it presents the user with a plot of the beam’s horizontal and vertical
sizes as a function of z along the beamline — this additional information permits a human to find a
solution much faster than the minimizer (the locations of the horizontal and vertical zero-crossings tell
you which way to change the quads’ values). Even so, using gminuit in manual mode is significantly
easier than it would be to do this by manually typing each command (gminuit presents the user with a
simple way to change the values of the variables and to execute the program once).

1/10/14 TIR G4beamline User’s Guide 135

7.26 Using Two or More Reference Particles

Unlike most accelerator programs, G4beamline realistically handles particle decays and interactions.
This makes it suitable to simulate muon beams from a primary proton beam all the way to a muon
experiment or cooling channel. This means that the portion of the beamline just after the production
target should be optimized for pions, and the portion at the end should be optimized for muons. The best
way to do this is to use two reference particles, one starting at the production target with particle=pi+,
and one starting at a suitable downstream point with particle=mu+. The key point is that no tuning
should be done in the region where both reference particles are tracked. In example AUGOS.in, the pion
reference hits an aperture and is killed. If this does not happen naturally, you could use a particlefilter to
kill the pion reference at an appropriate place. Tuning will get confused if multiple reference particles
enter the tune region.

7.27 Fitting to Plots and Histograms in HistoRoot

A major advantage of using HistoRoot is the fact that it is based on Root [5] and has all of the Root
features at its disposal. This includes the ability to fit functions to plots and histograms. The Root user
interface is quirky, but quite functional.

To fit a function to a histogram, first generate the plot containing the histogram. Right-click on the
histogram itself (one of its bins, not the canvas and not any axis or other object — the cursor changes
from cross to arrow when clicking will select the histogram; that’s what you want), and then select
FitPanel. The FitPanel lets you select from among a number of pre-defined functions and a user-defined
function:

Name Description
gaus A Gaussian distribution.
gausn A normalized Gaussian distribution.
expo An exponential distribution.
landau A Landau distribution.
landaun A normalized Landau distribution.
pol0 — pol9 A polynomial of order 0 through 9.
user A user-defined function: use "[0]", "[1]", ... for the parameters to be fitted, and
make it a function of the variable "x" (or "x" and "y"). For instance, here is a
1-d Gaussian: [0]*exp(-0.5*(x-[1])*(x-[1])/([2]*[2])) (parameters are: constant,
mean, sigma). Note that after typing a user expression you MUST do "Set
parameters", or you will get an error "Function with name ... does not exist".

There is a button to set the initial values and ranges of the parameters for the selected function. There are
a number of options. If you select “Use range”, then the double-slider below becomes active and will set
the range of the fit (displayed visually in the plot as you move the slider ends). When fitting, it is useful
to check the plot’s menu item Options/FitParameters so the fit results are displayed in the statistics panel
of the plot (you can drag its edges to make it larger, and its font will scale). For further details, see the
Root documentation.

1/10/14 TIR G4beamline User’s Guide 136

Note that if you want to play with backgrounds, you can select Options/CanEditHistograms — then with
the mouse you can drag any histogram bin’s value up or down as you wish. You can then re-fit to see
how your changes affect the results.

7.28Interfacing to Other Programs

Many different file formats are used in physics today, and no program can implement all of them.
G4beamline supports ASCII file formats that are suitable for interfacing to other programs, including
both track files and field maps. A conversion program in C or Java can easily be written to read an
ASCII file and write another in a different format (e.g. new order of items, different units, etc.). Root
files can also be converted — Root [5] is quite powerful, and can easily be scripted using C++ macros. It
is straightforward to open a root file, select a TNtuple from it, loop over its rows, and write a new Root
file and TNtuple (or ASCII file) in a new format. The Root documentation and examples contain
numerous macros of this sort. If you have need for an interface that cannot easily be implemented, you
can suggest a new feature for G4beamline to implement it directly (see section 7.3).

7.29 EventID and TrackID, and Encoding Information in them

In G4beamline, EventID is an integer between -2 and 2,147,483,647 (0Ox7FFFFFFF), inclusive. Note,
however, that EventID-s greater than 16777215 (OxFFFFFF) cannot be precisely represented in a float
and their values in any NTuple will be rounded. Values -2 and -1 are reserved for the Tune and
Reference particles.

In G4beamline, TrackID is an integer between 1 and 2,147,483,647 (0x7FFFFFFF), inclusive. Similarly,
TrackID-s greater than 16777215 (OxFFFFFF) cannot be precisely represented in a float and their values
in any NTuple will be rounded. In addition, the beam command will issue a warning for every primary
TrackID greater or equal to the value of secondaryTrackID (such a primary TrackID could be confused
with a secondary’s automatically-generated TrackID).

Note there is no requirement that either EventID or TrackID be unique or sequential. When G4beamline
generates events, the EventID-s are assigned sequentially from 1, the primary TrackID-s are assigned
sequentially from 1 within each event, and secondary TrackID-s are assigned sequentially from the
secondaryTrackID argument to the heam command (default=1001).

This means that when generating a beam file to be read into G4beamline, you can assign both EventID-s
and TrackID-s in whatever manner you like, subject to the above constraints. For instance, you could
assign bins to the phase space of a generated beam and set either EventID or TrackID to the bin number
of each track in the beam file. After running G4beamline to determine which tracks are accepted by the
system, a plot of the acceptance can be made by post-processing the output file with knowledge of how
many tracks were generated in each bin.

7.30 Examining Outlier Events

It often happens that some sort of puzzling event occurs, or an outlier entry appears in some histogram.
Here is a method to find such events and then visualize them. As a simple example, consider this
bending magnet (red) followed by a virtualdetector (green), with 100 beam tracks shown (blue):

1/10/14 TIR G4beamline User’s Guide 137

This looks fine, until one runs 1,000 events and histograms x in the virtualdetector — clearly there is an
outlier track at x ~ 1500.

[x(at the green virtualdetector) |

45 Plot1
Entries 991
Mean -399.2

RMS 279.7

40

35
30
25
20

15

10
5

HII||||||HllllH\‘I||||||\||||I\‘|IIJ|IIII‘

ri R R
-1000

PR ST I

PR - PR
-500 0 500

P R | |
° 1000 1500

The way to find this event is to use a slider and the EventID features in Aistoroot to select the outlier
event and write a histo_events.txt file:

File Plot Help

X HistoRoot
Use the File menu to open file(s), select an NTuple and Plot type, then enter expressions below. ‘

[~ NTuple
gdbeamline root/VirtualDetector/Detl (1000 entries)
gdbeamline root/VirtualDetector/Detz (1000 entries) |
gdbeamline root/VirtualDetector/Det3 (1000 entries)
gdbeamline root/VirtualDetector/Detd (1000 entries)
Plot Type |
& 1d Histogram I errorbars: sqr{sum of weights squared) |
€ 2d Histogram {scatter plot, ..)
€ X-Y Plot
Ptot Enter expressions below using the fields of the NTuple {listed on leff)
KEproton and C arithmetic functions and operators.
KEmuon A right-click will insert from the list of fields of the NTuple.
KEalpha % |><
X ¥
¥ i
z weight: I
Px
Py errarhar X: I
th errorbar Y:
PDGid The sliders below impose range cuts on the NTuple:
EventiD sl [y
TrackiD .
Parentip g2
Weight $3:
s4:
See the Help for of the following fields:
Max Events-l PamcleType-| EvenllD-| EventiD

Create Plot! |
Note that slider S1 has the same expression as the histogram x — this permits you to use S1 to select just
the outlier event. As the EventID field contains an expression that evaluates to the event # of the NTuple

1/10/14 TIR G4beamline User’s Guide 138

row, historoot will write all selected EventID-s to the file Aisto _events.txt (re-writing it repeatedly as the
slider is changed). After selecting just the outlier entry, its EventID will be the only entry in the file.

It is then straightforward to run G4beamline in visualization mode with the eventcuts command to select
just those events listed in the histo _events.txt file:

g4bl file.in ‘eventcuts file=histo events.txt’ viewer=best

(The eventcuts command could be edited into file.in instead of being placed on the command-line; in
g4blgui the checkbox “HistoRoot Events” puts that eventcuts command into the command-line.) The
result is clear and obvious -- this simulation clearly needs shielding around the bending magnet:

Note: this assumes the default treatment of pseudo-random numbers: the generator is seeded with the
event # before each event. This won’t work if you use the randomseed command to change that.

Note: If your input beam is a file, and that file has multiple tracks with the same event number,
G4beamline will treat each track as a separate event with that event number (see the description of
beams above). That means that if an event selected via eventcuts has (say) three beam tracks, only one of
them need satisfy the conditions used to select the event. The other two tracks with that event # will be
selected by eventcuts but may well look puzzling, as they probably don’t satisfy the conditions, and will
appear as separate tracks in the visualization. Just ignore them.

7.31Increasing the Number of Events Displayed Visually

By default, the maximum number of events displayed in a viewer is 100. To increase this limit to 1000
events, execute this command:
gd4ui when=4 “/vis/scene/endOfEventAction accumulate 1000”

7.32Building G4beamline, Adding Your Own Code

There are several reasons why you might want to build G4beamline from source:
* You want to run it on an unsupported system or OS.
* You want to optimize it for your system (e.g. a 64-bit build).
* You want to add your own new feature or code.

1/10/14 TIR G4beamline User’s Guide 139

Before you can add your own code to G4beamline, you must build it from source. Read BUILD.txt and
README-*.txt (in the doc directory of any distribution) for details. Note the required tools and the
details of the build procedure differ for different OSs.

Once you have built G4beamline from source, test that g4b/make works on your system:
cd test

./test72
If this says “test-72: compiling user code omitted” then there is an error in your configuration. If test72
takes 20-30 seconds and prints nothing but its 1-line synopsis, then it succeeded (all tests succeed
silently but print an error on failure).

Now you are ready to add your own code. First, create a directory in which to work; for this example I’11
call it testing:
cd
mkdir testing
cd testing
copy or create your new code in a file such as testing.cc
gd4blmake

By default this compiles *.cc *.cpp *.C into a new build of G4beamline. Add “-v” to display the details.

If you need an additional library, list all of the files you need on the command line:
G4blmake [-v] *.cc /some/other/library.a

You can put the corresponding “-I/some/other/include/dir” either in the environment variable

CPPFLAGS, or directly on the g4blmake command line (before the .cc files that use it).

If you have some Fortran source, then you will need a Fortran compiler that is compatible with the C++
compiler on your system. You will also have to write the C++ that calls the Fortran routine(s) correctly
(functions are extern “C” in lower-case with an underscore appended, scalar arguments are passed by
reference, multiple array indexes are in different order, etc.; Google “C++ calling Fortran” for
suggestions). In this case, it is easiest to construct a Makefile to build the pieces (this uses the system
.f.o rule to compile the file fortran.f, then link it into G4beamline):

Makefile:
Compile *.cc and fortran.f into G4beamline.
gdbeamline: *.cc *.hh fortran.o
g4blmake *.cc fortran.o /usr/local/lib/libgfortran.a

clean:
rm -f *.o gd4beamline

Once your private build of G4beamline succeeds, to run it just follow the directions g4b/make printed:
export G4BEAMLINE=pwd' /gd4beamline

Now the g4bl script will run your private version. You can verify this by looking at the heading that
g4beamline prints out during startup: the version will show both the G4beamline version and your login
id. You can also do “help mycommand”, or just use mycommand.

Some brief suggestions for writing G4beamline code:

1/10/14 TIR G4beamline User’s Guide 140

* Point your browser to <install>/doc/html/index.html — this will browse the Doxygen
documentation for the G4beamline classes.

* (lass names beginning “BL” are G4beamline infrastructure classes.

* (lass names beginning “BLCMD” are G4beamline commands.

* Filenames are based on the class names by appending .hh or .cc.

* Because commands are modular and independent, your new feature should be packaged in a
command. That is, your code should not do anything until and unless the input file uses your
command. As a bonus, arguments to that command can pass user-specified values to your code.

* There are many commands in the source. Base your command on an appropriate one.

* Multiple features should be in multiple commands. Note that even such complex features as a
space charge computation are contained in a command.

* In general, G4beamline commands are contained in a single file not referenced by any other code
(BLCMDphysics and BLCMDcoil are exceptions). In particular, there are no .hh files for
command classes; the declarations are at the top of the .cc file.

* All classes that implement a command are derived from BLCommand; they register themselves
as commands via a static initializer and their default constructor. When properly written, simply
compiling your MyCommand.cc via g4blmake will enable its command to be used in any
input.file.

* Because commands are so modular, multiple developers can be working on multiple commands
in parallel, without conflicts. Only modifications to infrastructure classes require coordination.

¢ Contributing a command to the G4beamline distribution is very simple, and consists merely of
having the development team test it, and then copy its source file into the build directory.

* An exception to using a command is usertrackfilter. This command was specifically designed to
use simplified user-supplied code. See section 8.4.

7.33Displaying Magnetic Field Lines

The fieldlines command will display magnetic field lines. Due to the difficulty of finding fields without
user assistance, you must specify a point (in global coordinates) near which to start the field lines; this
point is used as the center of a circle of specified radius. The plane of the circle is normal to the B field
at its center. Within the circle, field lines are placed with density that is inversely proportional to [B].
You must also specify the approximate number of field lines to draw; due to the algorithm used this is
only approximate.

Within the circle, the initial points of the field lines are allocated as follows: an NxN square grid is
placed so it circumscribes the circle; initially all points outside the circle are excluded. An initial value
of scale is guessed. As each line is placed, all grid points within scale/|B| of its location in the circle are
excluded. The next point is placed at the un-excluded grid point that is closest to the center of the circle,
and nearby grid points are excluded. This continues until all grid points have been excluded. If the total
number of field lines placed is within a factor of 2 of the desired number, this set is accepted and the
field lines are drawn. If the number placed is too small, scale is reduced and the procedure is repeated; if
the number placed is too large, scale is increased and the procedure is repeated. At most 10 iterations are
permitted. This implies that asking for fewer than 5 lines, or more than 1,000 lines, is likely to be
ineffective. This algorithm gives a good distribution of field lines for solenoids and other simple fields.

1/10/14 TIR G4beamline User’s Guide 141

Once the lines are placed within the circle, for each one the B field is traced in both directions; there are
three criteria for stopping drawing a given half-line:
a. The line intersects the plane of the circle (i.e. it has come back to the plane, but outside the
magnet).
b. The value of |B| falls below minField.
c. The field line leaves the simulated world.

There are additional arguments to the fieldlines command that control the drawing.

Remember the field lines are drawn in 3 dimensions, so they won’t look like the pictures in a textbook.
This is a feature, not a bug, and using the Openlnventor viewer to examine the system from different
angles can give a good understanding of the field lines.

7.34 Setting the Phase of RF Cavities (rfdevice)

A rfdevice may describe either just single RF cell or a whole multicell RF structure which shares a
common RF phase. It is important to note that G4beamline defines 0° RF to be the rising slope of the
zero crossing of the RF waveform, so 90° RF is on-crest for a positive particle. This is a common, but
not universal convention.

The phase of an RF device (rfdevice) may be set in a number of ways. The timing process is local to a
single rfdevice; tuning uses other elements to adjust parameters. Timing is done first and is described
here, while tuning is described in the next section. Examples and many details on timing RF cavities are
given in section 8.6; this is just a very brief summary.

The most basic way to time an RF cavity is to explicitly set its timeOffset, the absolute time by which
the fields are translated. fimeOffset includes all phase information. The electric field is of the form:

E(x,y,z) * sin(o (t - timeOffset))
and the magnetic field:

B(x,y,z) * -cos(o (t - timeOffset))

The rfdevice will try to find a consistent solution based on what it is told; both under- or over-
specifying the system are fatal errors. If both timeOffset and maxGradient are specified, nothing more
needs to be determined.

If timeOffset is unspecified, a timingMethod must be used to determine the global (“BASE”) timing of
0° RF. For most applications timeMethod=maxE is preferred, in which the time of maximum energy
gain of a positive particle is taken to be 90° RF. The default timeMethod=atZ emulates the old rfdevice
behavior, in which timeOffset is chosen such that w(t-timeOffset)=phaseAcc at the timingAtZ (usually
the rfdevice center) location. In most cases, the maxStep ought to be set to ~1 mm, as the default step
size 1s too large. The method launches Tune (Event# -2) particles and uses them to find a solution. The
timing of deflecting cavities is discussed in section 8.6.

rfdevice ... timingMethod=maxE maxStep=1

1/10/14 TIR G4beamline User’s Guide 142

maxGradient= (AV/L) MV/m phaseAcc=(¢p) degRF

maxGradient=(AV/L) MV/m fixEnergyGain= (AE) MeV
maxGradient=(AV/L) MV/m fixMomentum=(|Pourl|) MeV/c
timeOffset=(tipsolute) NS maxGradient=(AV/L) MV/m

Common phase-setting option combinations.

The arguments to the rfdevice command are described in section 5, and section 8.6 describes setting it

up in more detail, but briefly one can fix some parameters while the rfdevice routine will attempt to fill
in the remaining parameters; if it fails, G4beamline reports a fatal error. The final result of the timing

for each rfdevice is printed to stdout

See also section 2.11 (Tuning the Beamline).

7.35Tuning the maxGradient of RF Cavities (rfdevice)

When RF cavities are used, it is generally necessary to carefully adjust their maxGradient so the output
beam has the desired energy or momentum. The operators of the machine arrange for this either
manually or via an automated feedback system. In G4beamline this can be done two ways.

The first is the autoTiming technique and it is local to just its own rfdevice, requiring no information
from downstream locations. In this method, generally both the appropriate timingMethod=maxE and the
step size maxStep ought to be specified, as the defaults may not be good choices.

rfdevice ... timingMethod=maxE maxStep=1
timeOffset=(tipsolute) NS fixMomentum=(|Pour|) MeV/c
phaseAcc=(p) degRF fixEnergyGain= (AE) MeV
phaseAcc=(¢p) degRF fixMomentum= (|Pout|) MeV/c

Common gradient-finding option combinations

The second technique requires the fune command and is done while tracking the Tune (Event# -2)
particle, usually in parallel with setting their phases (see previous section). The fune command defines a
“tune variable” and will arrange to save the Tune particle at one Z-position (z0), track the Tune particle
to a second Z-position (z1), and then evaluate an expression using track fields. It then varies its tune
variable in an attempt to make the expression evaluate to 0.0. This of course requires that some relevant
beamline elements between z0 and z1 use the tune variable to change their behavior appropriately. In
this case we’ll vary the maxGradient of all RF cavities between z0 and z1, and use an expression at z1
that makes the Tune particle have the desired momentum, which we’ll take as 1 GeV/c to within 1
keV/c:

tune Grad z0=990 z1=41010 initial=10.0 step=0.5 \
expr=Pz1-1000 tolerance=0.001

rfdevice Cavity maxGradient=Grad frequency=0.201 \

1/10/14 TIR G4beamline User’s Guide 143

innerLength=400
place Cavity z=1000 copies=100

Note that z0 must come before the first Cavity is placed, and z1 must be after the last Cavity is placed, at
the location where the 1 GeV/c beam is desired. See also section 2.11 (Tuning the Beamline).

1/10/14 TIR G4beamline User’s Guide 144

8 Advanced Topics

8.1 Writing Scripts Using G4beamline

By using parameters in your input.file you can automate running G4beamline programs, without having
to script the editing of your input.file.

8.1.1 Using a Linux Cluster or Multi-CPU System

Because the pseudo-random number generator is seeded with the Event number before the start of each
event, all that is necessary to run jobs in parallel is to ensure that they do not run the same events and
that they write to different output files. The arguments firstEvent and lastEvent to the beam command
facilitate this. The basic idea is to use parameters for firstEvent and lastEvent and pass them in on the
command-line, and write a shell script to submit multiple jobs to the cluster with disjoint ranges for each
job. Here the output file corresponds to the first event number. The input.file looks like this:

give defaults for ease in testing

param —-unset first=0 last=1000

use S$first for the Root file (.root will be appended)
param histoFile=$first

output S$histoFile.out

beam Gaussian firstEvent=$first lastEvent=S$last ...

Any other output files (e.g. format=ascii for virtualdetector, zntuple, timentuple, etc.) should be set to
Sfirst as well, so multiple instances of the program won’t overwrite output files.

The simulation is run like this on a 4-CPU system (bash shell):
g4bl input.file first=0 1ast=999999 &
g4bl input.file first=1000000 1last=1999999 &
g4bl input.file first=2000000 1last=2999999 &
g4bl input.file first=3000000 1last=3999999 &
tail -f 0.out # watches the output from the first instance

Or:

tail -1 *.out # gives a snapshot of where each instance is

The output files will be 0.root, 1000000.root, 2000000.root, and 3000000.root. The historoot program

can be used to generate histograms:
historoot *.root

You can select the 4 instances of a given NTuple and historoot will generate histograms and plots
containing results from all 4 million events.

The example MICE StageVI.g4bl is a real-world example using this technique.

8.1.2 Using the gminuit Program to Tune Values

The gminuit program (http://www.muonsinc.com [ComputerPrograms/Gminuit]) was specifically
designed to permit the easy tuning of values in an input.file for G4beamline. Because any argument to
any G4beamline command can be set from a parameter, and any parameter can be set on the
G4beamline command line, gminuit can be used to tune any value in your input.file based on any

1/10/14 TIR G4beamline User’s Guide 145

criterion you can script. It is possible to determine the gminuit value to minimize by either reading the
output from G4beamline with steppingVerbose=1 (tailor steppingFormat to suit), or by reading the file
generated by virtualdetector format=ascii or trace format=ascii. Remember that most shells only do
integer arithmetic, so it is appropriate to use a tcl or perl script to interpret the G4beamline output and
return a value for gminuit to minimize. See the gminuit documentation for details. The file
examples/triplet.sh is an example that uses gminuit to tune a quad triplet.

8.2 Violating the Rules on Geometrical Intersections

Geant4 tracks particles through the geometry hierarchy by looking for the next geometrical boundary
along the track’s path, and arranging so there is a step that ends at each boundary crossed by the track.
To keep the search for boundaries efficient, Geant4 only looks for the outer boundary of the current
volume and for boundaries of all daughter volumes of the current volume. So if sibling volumes A and B
overlap, if the track enters A first, then it will be tracked in A through the region of intersection; but if it
enters B first then it will be tracked in B through the region of intersection. Similarly, if a daughter A1
of A extends outside volume A, then if the track is in A1l it can be tracked in A1 even outside of A; but
if it comes in from the sibling or parent of A it won’t enter Al until it enters A.

While violating the rules is risky and discouraged, if you are careful they can be violated when
necessary (e.g. it is not possible or too difficult to describe the geometry correctly). If the invalid
intersections don’t matter, then they won’t affect the result of the simulation. They won’t matter if all
volumes involved have the same material and none of them is “active” (in G4beamline that means they
aren’t a virtualdetector). They also won’t matter if the regions of intersection are in places where no
particles are tracked (e.g. far from the beamline aperture). And they won’t matter if either of the
intersecting volumes has kill=1.

The automatic geometry test in G4beamline verifies the geometry hierarchy by testing points on the
surface of each element’s volume, verifying that each point is inside the parent volume of the element,
and is outside every sibling volume. The points are selected to test “corners” first, and then points are
randomly distributed over the faces of the surface of the volume. This is not perfect, but it does catch
nearly all invalid intersections.

Geant4 also has other methods of verifying the geometry hierarchy. See the Geant4 user’s manual [1].
They involve shooting geantinos through the detector and verifying that the boundaries each one crosses
are ordered properly. They can be executed using the g4ui command.

8.3 Making a Movie

G4beamline now supports the ability to make a movie of the beam, with the camera sitting on the
reference particle watching the other beam particles “dance” around nearby. The implementation is quite
flexible, and permits the user to specify multiple simultaneous panes, each displaying an arbitrary pair of
expressions using the track variables. An example movie is viewable at
http://g4beamline.muonsinc.com. Here is its first frame:

1/10/14 TIR G4beamline User’s Guide 146

y VS. X

Px @s. x

t=0.001 ns
This movie is of Examplel.g4bl, in which a Gaussian muon beam propagates through free space into
four virtualdetector-s (which are invisible in the movie). The movie is 10 seconds long, during which the
“y vs. X” pane’s particles grow considerably, and the two lower panes’ ellipses rotate in the usual
manner. A handful of decay electrons and neutrinos become visible.

Making a movie requires the following prerequisites:
1. Installation/configuration requirements:

G4beamline version 1.16 (or later).
Root version 5.20 (or later).
A C++ compiler that Root can use in ACLiC mode.
You must use the command-line to run gdblmovie; on Windows this requires Cygwin [7].
The ffmpeg program [8] must be installed (it converts a series of frame images into a
movie).
2. G4beamline simulation requirements:

a. There must be a reference particle.

b. The movie command must be included. Note that once you have a working simulation,

this can be given on the command line:
g4bl input.file movie

3. gd4blmovie command-line program

a. Itis included in the G4beamline distribution (1.16 and later).

o poos

1/10/14 TIR G4beamline User’s Guide 147

b. Note that so far this has been used only on Mac OS X; it is expected to work on other
platforms but has not yet been tested.

The basic approach is to first run a G4beamline simulation, with the input.file containing the movie
command, and with a Root output file. The movie command arranges to generate several NTuples in the
Root file that will be plotted to make the movie. This is quite similar to the trace command that traces
all tracks into a single NTuple, so the output file can grow quite large. Note that a movie containing
more than a few hundred particles tends to be so crowded that details are not visible. Once the
simulation is complete, the g4blmovie command is run, which has its own input file to describe the
movie. This program uses Root to read the movie NTuples and generate a series of image files; it then
runs ffimpeg to convert them into the desired movie, and then deletes the image files. Note that movies
can get large, and the production process requires about triple the disk space of the final movie; a 10-
second movie at 24 frames/second is typically about a megabyte long (these rather un-natural images
don’t compress very well).

The new g4blmovie command has one argument, an input file to describe the movie. This gives great
flexibility in organizing the picture as a number of panes, each displaying a pair of expressions using the
track variables. The panes are laid out in rows, with no inherent limit on either the number of panes in a
row or on the number of rows, but too many of either will probably make the movie unwatchable. The
input file is quite similar to that of G4beamline, except that quoted arguments are not allowed, spaces
are not permitted (or needed) in any argument, and there are no parameters.

g4blmovie input file commands

Command | Argument Description
setup This command must be first. It sets basic parameters for the movie.
outputFile The output movie file. Its extension determines the format — any

format supported by ffmpeg can be used. The following extensions
are known to work: .mov, .swf, .avi. Beware: spaces are not allowed.
windowWidth | The movie window width, in pixels. All panes scale to this value.
windowHeight | The movie window height, in pixels. All panes scale to this value.

tMin The simulation’s start time of the movie (ns).

tMax The simulation’s end time of the movie (ns).

duration The real time duration of the movie in seconds (10).

frameRate The frame rate of the movie, frames/sec (24).

textHeight The default height of text, in pixels (15). Changeable in other
commands.

background The background color (#F3F3F3 — light gray). Changeable in other
commands.

borderColor The color of the borders between panes (#C0OC0CO).

borderSize The size of the borders, in pixels (5).

marker The marker to use (21 — the square marker). This marker is used for

all particles (but see the particle command below to color them). Note
that other markers, such as 20 (filled circle), can greatly slow down
the movie production.

markerSize The relative size of the marker (1.0).

1/10/14 TIR G4beamline User’s Guide 148

pictureType The extension of the pictures used to generate the movie (jpg). Other
types known to both Root and ffmpeg can be used, but jpg has given
the best performance.

particle Sets the color for each particle type.

* Arguments are of the form: 13=#0000FF, where 13 is the PDGid of
the particle, and #0000FF is the color (6 hex digits, 2 each for red,
green, and blue; #000000 is black, #FFFFFF is white, and #0000FF is
bright blue). The ‘#’ is required. PDGid 0 applies to all unset particles
(defaults to black).

plot Displays a plot of two expressions.

filename The name of the Root file to use. If omitted, uses the most recently
opened Root file (i.e. from the previous command). Note the NTuple
names to use are fixed: Movie/Reference and Movie/Tracks.

title Title of the plot (defaults to “y vs. x”, where x and y are the
expressions).

X Expression involving the track variables to plot horizontally.
Variables: x, y, z, Px, Py, Pz, t, PDGid, EventID, TrackID, ParentID,
Weight. The standard C functions and operators can be used.

y Expression involving the track variables to plot vertically.

xMin Left limit of the plot, in whatever coordinates are used by x.

xMax Right limit of the plot, in whatever coordinates are used by x.

yMin Bottom limit of the plot, in whatever coordinates are used by y.

yMax Top limit of the plot, in whatever coordinates are used by y.

background Color of the background (setup value)

textHeight Height of text in pixels. If omitted, the value from the sefup command
is used.

sideview Displays a side view of the apparatus using Reference Coordinates,
with a moving marker that indicates where the reference particle is
located at the current time.

markerSize The relative size of the marker (1.0).

filename The name of the Root file to use. If omitted, uses the most recently
opened Root file (i.e. from the previous command). Note the NTuple
names to use are fixed: Movie/Reference and Movie/Elements.

zMin Left limit of the plot, in Reference Coordinates (synonym is xMin).

zMax Right limit of the plot, in Reference Coordinates (synonym is xMax).

yMin Bottom limit of the plot, in Reference Coordinates.

yMax Top limit of the plot, in Reference Coordinates.

title Title of the view ().

textHeight Height of text in pixels (setup value).

background Color of the background (setup value)

oW Initiates a new row of plots.

height The relative height of this row. The first row has a height of 1.0,

which sets the scale.
space (none) Displays like a plot, but is empty.
title Title of the pad (*).

1/10/14 TIR

G4beamline User’s Guide

149

textHeight Height of text in pixels (setup value).
background Color of the background (setup value)

time (none) Displays like a plot, but contains the current time (in ns).
title Title of the pad (*).
textHeight Height of text in pixels (setup value).
background Color of the background (setup value)
Position (none) Displays like a plot, but contains the current Z position of the
reference particle (mm).
title Title of the pad (*).
textHeight Height of text in pixels (setup value).

background Color of the background (setup value)

Within a row, all plots share equally the total width of the window. The rows are laid out to use the
entire height of the window, but the fraction of each row is determined by its height/totalHeight
(totalHeight is the sum of Aeight for all rows). There can be a different number of plots in each row. You
can use windowWidth, windowHeight, the row height-s, and the number of panes per row to have both
large and small panes in one movie. Usually each pane should be approximately square. To play with
the layout, it is helpful to temporarily set tMax and duration to small values to speed up the production
until the layout is what you want. Many simulations start at t=0, and for them it is best to set tMin to a
small value (e.g. 0.001) so the initial tracks show up in the viewer when the file is opened but not

playing.

Here is the examples/Movie.in file that generated the example1 movie referenced above:

Movie from examplel.in with movie command -- outputs a Flash

setup outputFile=examplel.swf tMin=0.001 tMax=18 duration=10

et+=red, mu+=blue, others=gray (neutrinos)

particle -11=#FF0000 -13=#0000FF 0=#808080

plot filename=gd4beamline.root xMin=-800 xMax=800 yMin=-800 \
yMax=800 x=x y=y

plot xMin=-50 xMax=50 yMin=-50 yMax=50 x=Px y=Py

TOW

plot xMin=-800 xMax=800 yMin=-50 yMax=50 x=x y=Px

plot xMin=-800 xMax=800 yMin=-50 yMax=50 x=y y=Py

row height=0.1

time

Here are the commands used to generate and display that movie:
cd g4beamline-1.16-Darwin-g++/examples
g4bl examplel.in movie
gd4blmovie movie.in
open examplel.swf

1/10/14 TIR G4beamline User’s Guide

150

8.4 User Code for the usertrackfilter Command

The usertrackfilter command requires that the user compile code for use with G4beamline. The
usertrackfilter element permits the user to supply code that applies to every track that enters the physical
volume of the element; this code can:

* Kill tracks, based on arbitrary criteria.

* Modify the momentum, time, and/or weight of tracks.

* Create secondary tracks.

Doing this requires:
* G4beamline built from source on your system.
* A basic understanding of how to write and compile C++ code.
* On Windows, the Cygwin system must be installed.
* On all OSs, a command-line window is used.

The basic idea is to compile your code directly into G4beamline. An example is provided in the
directory UserCode in the G4beamline installation directory (if you don’t know where that is, type the
command “g4bl -dir”). It contains the following files:

Filename Description
ExampleFilter.cc Code for the example filter.
test.in Input file to test the example filter.

These instructions are for the bash shell; modify them appropriately for other shells. These are all basic
UNIX commands, and if you don’t understand them you probably need the assistance of someone more
experienced in UNIX and C++ code development. After installing and building G4beamline from source
(see the appendices, BUILD.txt, and the README files), you should first try running the example:

cd directory-for-your-simulation

mkdir UserTrackFilter

cp ~g4bl —dir" /UserCode/*

g4blmake

export G4BEAMLINE=$PWD/gd4beamline

g4bl test.in
This last command should end by printing:

Run complete 10 Events 0 seconds

ExampleFilter::complete killed 6 tracks, created 51 tracks

ExampleFilter::complete killed 6 tracks, created 51 tracks

Once the example works, you can modify it to suit your needs (the example is quite silly and unphysical,
it is intended only to show what can be done). Things to remember:
* The source files to be compiled are arguments to g4blmake; they default to *.cc *.cpp *.C (i.e.
the common extensions for C++ source files).
* Any additional libraries your code requires can be passed in the environment variable
EXTRALIBS, or can be simply appended to the g4b/make command line.
* Any additional compiler flags (e.g. —I/some/dir) can be passed in the environment variable
CPPFLAGS.

* Your filter code must implement a class derived from UserTrackFilter, and must have a static
instance (to register it with G4beamline).

1/10/14 TIR G4beamline User’s Guide 151

* Read the comments in UserTrackFilter.hh to understand the interface to G4beamline, and to see
what types of things your code can do.

* More than one derived class can be defined in the source files, either in a single .cc file or in
separate .cc files. They must have different filterName()-s.

* You can add other libraries if you wish. For example, your class could query an external
database indexed by eventID and trackID, and kill unwanted tracks as indicated by the database.
(To do that your class would connect to the database in setup(), query it in filter(), and
disconnect in complete().)

e It’s best to keep your code simple, as it is rather difficult to debug large programs like
G4beamline.

8.5 Multiple Instances of G4beamline using MPI

The Message Passing Interface (MPI) is a standard interface that permits multiple jobs on multiple
computer systems to cooperate in a single computation. One executes a single MPI job that simulates the
events specified in the input.file; internally it uses multiple jobs running simultaneously, collecting their
output into a single set of NTuples (in a single Root file by default). Only the tracking is parallelized,
but that is “trivially parallelizable” and the overheads are low; it scales quite well to many processors
depending on the details of both the system being simulated and the computer hardware. On a Mac Pro
running Mac OS X with 4 cores, the management and communication overhead is only a few percent.
On a supercomputer at NERSC (Hopper), a large simulation can profitably use hundreds or even
thousands of cores.

Note that MPI is not configured for the distributions of G4beamline. It is too system-specific for that.
You must install some MPI implementation and then build G4beamline from source.

G4beamline implements MPI when the argument “—enable-mpi” is given to configure when building
the program. While it is a general implementation compliant with MPI 2, it has been tested only on the
following systems:

* Mac OS X 10.7.5 with OpenMPI [11] installed, on a Mac Pro with 4 cores.

* The supercomputer Hopper, at NERSC [12].
On other systems it may be necessary to modify the g4b/mpi script. Using MPI on a Linux box or cluster
ought to be very similar to Mac OS X; Hopper runs a supercomputer version of Linux.

G4beamline is written such that if you just run it by itself, via the g4b/ script, via the g4blgui program,
or via an icon, it runs without MPI as a single, local process. But if it is run via the g4b/mpi script, then
it runs the specified number of instances and operates in MPI mode, via either mpirun or aprun
(depending on which is available).

In MPI terminology, each instance of the program is called a “rank”; the ranks are enumerated by a non-
negative integer unique to each instance of the program, assigned by the MPI system sequentially from
0. For G4beamline, rank number 0 is the master-controlling instance, and all other ranks are worker

instances (nodes). The usual command is:

g4blmpi 5 input.file [.. parameters]

1/10/14 TIR G4beamline User’s Guide 152

This command acts very nearly like a single G4beamline program simulating input.file, except it uses 5
processes to speed up the computation. The basic operation is:
1. Setup the environment as in g4bl. This includes locating the shared objects and the Geant4Data.
2. Start 5 instances of the g4dbeamline program, using mpirun’s internal mechanism to start them.
3. Each instance of g4beamline determines that it was run via mpirun, and gets its rank number
from the MPI library.
4. The rank 0 instance does the following:
a. Reads input.file, constructs the geometry, the physics list, etc.
b. Creates an output file for each NTuple (one file for all Root NTuples).
c. Itloops, processing messages from worker nodes, of which there are three basic types:
i. A message indicating the worker is idle; rank 0 responds by sending it a block of
beam tracks to process, sending 0 tracks if none are left.
ii. A message containing NTuple rows; rank 0 responds by writing them to the
appropriate NTuple file.

iii. A message indicating the worker took an exception; rank 0 prints it (throttled as
usual for many identical exceptions). If the exception is fatal, that is
communicated to all worker nodes, and the program terminates gracefully.

d. When all events have been processed, and all worker nodes have indicated they have

exited, rank 0 terminates.
5. The instances with rank > 0 do the following:

Reads input.file, constructs the geometry, the physics list, etc.
Configures all NTuples to send their rows to rank 0 rather than writing to any file.
Sends a message to rank 0 indicating it is idle.
Waits for a message from rank 0 containing a block of beam tracks to process.
If the message contains 0 beam tracks, sends any un-sent NTuple rows to rank 0 (i.e.
flushing their buffers), and then exits.

f. Otherwise, processes the received beam tracks.

g. Loops back to c.
Error and exception handling is not mentioned above; it significantly complicates the code. G4beamline
makes a valiant attempt to always closeup gracefully, but when the system terminates the job that may
not be possible. Results are usually lost when a worker node runs out of memory, or when the job
exceeds its wall clock limit.

o a0 o

The following parameters control the MPI implementation:
MPI_PackTracks Number of beam tracks per message (default=100).
MPI_PackNTuples Number of NTuple rows per message (default=1000).
MPI_IdleSleep Sleep time (milliseconds) of the sleep in a loop calling MPI_Iprobe();
see below.
MPI_WorkerOutput Controls whether each worker writes to rank#.out (0 = not). Default = 1.
Rank 0 always writes to stdout and stderr; worker nodes never do.
MPI_Debug Controls MPI debugging output. Default = 0.
In addition, the parameter MPI_rank is set to the rank of the process; as each rank processes the
input.file, this can be used for debugging or distinguishing output files. It is set to -1 if MPI was built but
the run is in non-MPI mode. It is not set if MPI was not configured and built.

1/10/14 TIR G4beamline User’s Guide 153

Rank 0 writes to stdout and stderr in the usual way; all other ranks have both stdout and stderr redirected
to files ‘rank#.out’, or closed if MPI WorkerOutput=0. G4Exceptions will be displayed on both
rank#.out and stdout, and the rank 0 process totals them over all ranks. stdin is normally readable by
rank 0, but that won’t work as an input.file (because all ranks must read it).

Note that rank 0 only does management tasks, and performs no tracking of beam. On a Mac Pro with 4
cores, it is appropriate to run 5 ranks, as rank 0 needs only a few percent of a core. On a supercomputer
using dozens or hundreds of cores, rank 0 should have its own core. By default, MPI message passing
does not block, in order to reduce message latency. This means that rank 0 will use 100% of a core, even
though it does very little processing. On a supercomputer with hundreds of ranks working that is
appropriate, but it is wasteful on a small computer with just a handful of cores. Setting MPI IdleSleep=1
will make rank 0 sleep for 1 millisecond when it is idle (i.e. is not processing a message from a worker).
On a 4-core computer running 5 ranks, this can improve throughput by about 20%. Larger values only
reduce throughput.

There is little point in changing either MPI PackTracks or MPI PackNTuples; larger values do not help,
and smaller values only reduce throughput.

The parallel performance of G4beamline on your simulation will depend on a) the speed of the CPUs, b)
the speed and latency of the network among them, and c) the size of the system being simulated. See

section 8.5.2 below.

Some aspects of G4beamline have their operation modified in MPI mode:

steppingVerbose=1 | Performed independently on each rank, writing to files
‘rank#.out’ (unless MPI WorkerOutput=0).

fieldntuple Performed only in rank 1, to avoid duplication. (These

printfield commands are not normally used in MPI mode, as they are

probefield primarily for debugging.)

trace Performed only in rank 1, to avoid duplication. In ASCII format,
the annotations are lost (blank lines between tracks, and a
comment giving EventID and TrackID).

profile Sum up over all workers at the end of the run, before printing

totalenergy from rank 0.

printf Always prints from rank 0 (via messages from workers). As long
as each printf command is < 1 kByte, and all printf-s for a single
event are < 32 kBytes, the output from different events will not
be intermixed (but the order of events is not preserved).

spacecharge Collective mode is incompatible with MPI. This will probably

spacechargelw change in the future.

collective

Visualization Visualization is incompatible with MPI. A single build can
enable both visualization and MPI, but they cannot be used
together.

Windows MPI is not supported on Windows.

1/10/14 TIR

G4beamline User’s Guide

154

8.5.1 Signals

G4beamline responds to signal SIGUSR! by flushing all NTuples to disk. So for a long job you can look
at intermediate results.

G4beamline responds to signal SIGUSR?2 by closing up and exiting cleanly. In each worker this is
detected between events. This is especially useful on Hopper, as SIGUSRI and SIGUSR? are the only
signals users can send to the application; all others cause immediate termination without saving results.

8.5.2 Estimating how many workers to use

In general, if your simulation runs >100 events/sec on a typical core, then MPI will probably max out
around 10-20 ranks, because the serial operations in rank 0 will saturate. For a simulation that runs 13
ev/sec on a Hopper worker node, rank 0 saturates around 800 workers. From the parallelization plots in
section 8.5.4 below, it’s clear that on Hopper rank 0 saturates around 8,000 events per second. There are
several design and code changes that could be done to mitigate the rank 0 bottleneck, but for now this is
not considered serious enough to warrant development.

Note that a larger number of messages per event will reduce the number of workers that can be used
effectively, because the serial I/O in rank 0 will dominate. So for high performance, avoid printf,
steppingVerbose=1, trace, and a large number of NTuples.

There can be rather large overheads in starting each MPI process; on Hopper, 1600 ranks can take
several minutes to start up (from rank 0 starting to the last worker processing its first event). Startup is
loosely but not strictly in rank order.

The best way to estimate how many workers to use is to plot the performance (events per second) as a
function of the number of workers. When rank 0 becomes saturated, the events per second will likewise
saturate. Usually a few minutes will suffice for each point, and you can use the wallClockLimit
parameter to terminate the jobs. Be sure it is large enough for all workers to start up — if they don’t all
start up, the symptom is a droop in the Events/sec vs. nWorkers plot (as in Benchmark2 on hopper,
below, for 1600 workers). Another symptom of not all workers starting up would be an exception “Not
all Workers Contributed Data”, for the profile or totalenergy commands.

8.5.3 MPI on Mac OS X with OpenMPI
Here is the build of OpenMPI:

./configure --disable-dlopen --enable-static --disable-shared \
--disable-mpi-f77 --disable-mpi-f90 --prefix=/usr/local
make
make install
If you have other systems on a network that could be used via MPI, install OpenMPI on them and
configure it to use them. My instance of OpenMPI only uses the cores on my machine, and message

passing is via shared memory.

After installing OpenMPI, build G4beamline from source:
mkdir G4beamline-2.14-mpi
cd G4beamline-2.14-mpi
../G4beamline-2.14-source/configure --enable-mpi
make

1/10/14 TIR G4beamline User’s Guide 155

Note the make system must be able to find MPI on its own; if mpicxx is available, the Makefile uses it.

The program runs in single-core mode with visualization (via g4bl, g4blgui, or icon), or in MPI mode
(via g4blmpi). Using a visualization viewer in MPI mode is not supported.

The best performance on my Mac Pro with 4 cores is with 5 ranks and MPI_IdleSleep=1.

8.5.4 MPI on hopper.nersc.gov

On Hopper you must select which compiler to use, both for building and for running. For G4beamline,
the best compiler to use is gnu:

module load PrgEnv-gnu

export CC=cc CXX=CC CPPFLAGS="-dynamic"

mkdir G4beamline-2.14-mpi

cd G4beamline-2.14-mpi

../G4beamline-2.1l4-source/configure --enable-mpi —disable-visual

make
Note the export of variables CC and CXX, to prevent the Makefile from using the defaults (which are an

old version of gcc and g++ which you do NOT want to use). MPI is already known by the compiler.

Be sure to do “module load PrgEnv-gnu” in your batch script to gsub (it is needed to find shared
objects).

On Hopper, use the default MPI_IdleSleep=0.

NOTE: Hopper does not have a very good method of detecting when memory is exhausted on a worker
node (even though G4beamline itself does). You really want to avoid running out of memory, as Hopper
does not permit the job to closeup gracefully, and all results will probably be lost. The message “OOM
killer terminated this process” indicates the job was killed due to a worker node being Out Of Memory.

If you are part of a project that uses G4beamline, there may already be an installation of G4beamline for
your project. For the Muon Accelerator Program (MAP), look in /project/projectdirs/map/Codes.

Here is an example script for submission via gsub:
#PBS -q debug
#PBS -1 mppwidth=24
#PBS -1 walltime=00:30:00
#PBS -N Benchmark
#PBS -J eo
source /project/projectdirs/map/bin/compiler gnu
source /project/projectdirs/map/Codes/G4beamline/bin/g4bl-setup.sh
cd $PBS_O_ WORKDIR
g4blmpi 24 Benchmarkl.gé4bl wallClockLimit=240

These parallelization plots were made on hopper.nersc.gov, using the scripts in the Benchmark directory
of the distribution.

1/10/14 TIR G4beamline User’s Guide 156

[__Benchmark1 - MICE Beamline | [Benchmark 2 on hopper.nersc.gov |

9000
14000

8000

7000 12000

: 2
& 6000 — 510000 —
] C 1%
2 5000 o -
= E 5 8000 —
E = Q. -
04000 — » -
& E E 6000—
3000— B r
E 4000—
2000 — C
1000 2000—
oL P I BT T I IS | 0’-‘...I,K.I‘.‘I.‘.l..‘l...]...I...I..‘
20 40 60 80 100 0 200 400 600 800 1000 1200 1400 1600
nWorkers nWorkers

Hopper Parallelization Graphs: Benchmarkl and Benchmark?2.

8.6 G4beamline Helper Programs and Scripts

G4beamline requires a large number of environment variables to be set, so users rarely run the
g4beamline command directly, but rather execute it via a helper program or script.

The helper programs are all written in Java and run in all environments that G4beamline itself can run.
Their Java .class files are located in share/g4beamline of the installation. The Java runtime environment
(JRE) must be installed.

The helper scripts are usable in these environments:

1. Linux

2. MacOS X

3. Windows with Cygwin
The scripts rely on the bash shell, and are therefore not runnable on Windows alone. They are located in
the bin directory of the installation. Note, however, that the Java programs provide the same
functionality as the scripts, except for MPI (which is inherently command-line).

8.6.1 Helper Programs

G4blGui Provides a Graphical User Interface to G4beamline. It sets up all required
environment variables, and runs g4beamline with or without visualization. The
standard output and error streams are displayed in a scrollable pane in the window.
This is the standard interface on Windows and Mac OS X, and is available on Linux.

G4blData Manages the Geant4Data directory, which contains the Geant4 data files necessary
for the different physics lists. It provides a GUI that lets the user specify the location
of the directory, select and download the data sets from the CERN website, and
unpack them into the specified destination directory.

8.6.2 Scripts

g4bl-setup.sh A script to put the G4beamline scripts into the user’s PATH, for the sh class of shells
(sh, bash, ksh, zsh, etc.); must be source-d.

1/10/14 TIR G4beamline User’s Guide 157

g4bl-setup.csh A script to put the G4beamline scripts into the user’s PATH, for the csh class of

g4bl

g4blmpi

g4blgui

g4bldata

g4blmake

g4bl-config

g4blmovie

g4bl_debug

shells (csh, tesh, etc.); must be source-d.

This is the standard script to run G4beamline. It determines the install directory from
the path by which it is run. It then sets up the required environment variables and runs
g4beamline with or without visualization. The standard output and error streams are
as usual in a UNIX environment.

This script runs G4beamline in an MPI environment, applying multiple instances of
g4beamline to a single problem. Its first argument is how many instances (ranks) to
use; the remaining arguments are the same as for g4b/. See section 8.5.

A script to run the G4b/Gui program from the command-line.

This script manages the Geant4Data directory and files. Runs the G4blData program
for installation.

A user command to build g4beamline with additional user-written code.

A script for querying the G4beamline configuration. Rarely if ever run directly by
users.

A script to create a movie. See section 8.3.

A script for debugging G4beamline. Useful only when built from source.

8.6.3 Implementation Details

Each script or program must determine various aspects of the environment required to run the
g4beamline program:

Install Directory The environment variable G4BL_DIR points to the install directory. Java

ROOTSYS

programs use Util.findG4blDir(), while it is hard coded into each script.

The Root library works better when this is set to G4BL_DIR.

Physics Datasets The Geant4 physics processes need various data. The g4bldata script manages

this, as do the Java programs via Util.findGeant4Data(). Once installed, the
.data file in the install directory points to the directory containing the
Geant4Data. That directory contains a sefup.sh script which sets the
environment variables the Geant4 library expects, plus directories containing
the various datasets.

Library Search Path On Linux and Mac OS X the /ib directory contains shared libraries. On

1/10/14 TIR

Windows they are in bin.

G4beamline User’s Guide 158

8.7 Setting up an rfdevice

It is worth repeating that G4beamline defines 0° RF to be the rising slope of the zero crossing of the
RF waveform, so 90° RF is on-crest for a positive particle, while 270° RF is on-crest for a negative one.
This is a common, but not a universal convention.

For many applications, especially very relativistic beams, setting up the RF is very straightforward. For
others, such as muon cooling, the beams are relatively slow, phase and gradient are coupled, and
compensating for energy loss in absorbers is the goal rather than simple acceleration.

There are a number of ways to setup the RF. This autoTiming process is local to a single rfdevice,
while the tune command uses information downstream of the rfdevice. A brief how-to on timing the RF
is in section 7.34 and adjusting the gradient using fune is in section 7.35.

Everything is totally determined once timeOffset and maxGradient and the fields are known. The timing
process described here may be used to determine timeOffset and/or maxGradient of a single RF device,
and may then derive phaseAcc and other quantities.

Inside every rfdevice is a timingVolume. This object is a cylinder with one face close to the entrance
and the other at the point that will be used to determine the timing; almost always either at the center of
the cavity (the default when using timingMethod=atZlocal) or at the exit (all other methods). This
timingVolume is immaterial, but it is an object and ought not overlap any other object. It will be visible
in the graphics if timingDisplay is nonzero.

rfdevice RF1 innerLength=744 color=0.8,0,0.8,0.4 \
frequency=0.20125 maxGradient=25 phaseAcc=70 \
innerRadius=450 pipeThick=1 wallThick=1 irisRadius=230 \
collarRadialThick=0 collarThick=0 winlThick=0 win2Thick=0 \
winMat=Vacuum winMat=Vacuum cavityMaterial=Vacuum \
maxStep=1 timingMethod=atZ timingDisplay=1

File Etc Help

FIRNGEEYE E

Motion X Motion ¥ [IRECT T o Motion Z

1/10/14 TIR G4beamline User’s Guide 159

The timing process ignores everything outside of the timingVolume. The timing process allows one to
specify 2 out of 3 conditions (maxGradient, timeOffset, and fixed outputs) and it will determine the 3™
condition, if possible. If it cannot find a solution, G4beamline will exit with an error message.

For deflecting cavities, the timingVolume is still aligned so the Tune particle enters one face and exits
the other, but the trajectory needs not be normal to the face.

The relationship of the particle and the RF fields is a delicate one; the particle must arrive at the correct
point in the RF cycle and the RF must have the correct voltage. For slow particles, there is an
interrelationship between the phase and voltage of a cavity, so changing the maxGradient may require
readjusting the timing.

The most basic way to setup an RF cavity is to just explicitly set its timeOffset, the absolute time by
which the fields are translated. timeOffset includes all phase information. The electric field is usually of
the form:

E(x,y,z) * sin(o (t - timeOffset))

The rfdevice’s UserSteppingAction routine will try to find a consistent solution based on what it
is told; both under- or over- specifying the system are fatal errors. A Tune (Event# -2) particle is
launched from a spot near the entrance of the timingVolume for each pass within the rfdevice.

If explicitly specified, timeOffset may not be altered by any subsequent requirement, and any attempt to
do so will result in an error message. If unspecified, timeOffset will be determined according to the set
timingMethod and the subsequent requirements given to rfdevice, and then finally shifted by
timelncrement.

A method (timingMethod) launches multiple Tune particles (Event# -2) from a spot near the entrance of
the timingVolume and uses them to determine the time associated with 0° RF. Once that is complete, a
Tune particle then makes one pass at that setting. Messages for each step in the procedure will be
printed if timingDisplay=1, and additional messages will be shown if timingDisplay=2. The process
will continue until changes in the base timing are less than an associated tolerance (timeTolerance); the
default is 0.001 ns. The tracking step size within the rfdevice ought to be set reasonably small; usually 1
mm works well.

Several methods are provided to determine the base timing; only for special cases of deflecting cavities
or very slow particles will the methods give much differing results. The default method is
timingMethod=atZlocal, where the timing is adjusted so the particle would arrive at the (local to the
rfdevice) timingZlocal location (default is 0 mm) inside the rfdevice at the appropriate phase (this was
used in earlier versions of G4beamline). In actual practice, however, most people adjust a real cavity for
maximum energy gain (timingMethod=maxEnergyGain), corresponding to 90° RF for a positive particle
and 270° RF for a negative particle. When using a multicell cavity, the latter method is usually
preferable.

1/10/14 TIR G4beamline User’s Guide 160

For special cases, including deflecting cavities, other methods of determining the base timing are
available as shown in the following table. Here the transit time is considered relative to the drift time, so
timingMethod=noTransitTime corresponds to the same transversal time as a simple drift.

Available timingMethods for determining 0° RF

method abbreviation | default description
timingAtZ

atZlocal atZ middle used by G4beamline 2.08 and earlier, generally not

used with fix* output requirements
maxEnergyGain | maxE exit most common method for most RF
noEnergyGain | noE exit for RF bunchers
minEnergyGain | minE exit for decelerating RF
maxTransitTime | maxT exit for special applications
noTransitTime | noT exit for special applications
minTransitTime | minT exit for special applications
maxXdeflection | maxX exit for deflecting cavities -

X in local rfdevice’s coordinates
noXdeflection noX exit for deflecting cavities —

X in local rfdevice’s coordinates

minXdeflection | minX exit for deflecting cavities —

X in local rfdevice’s coordinates
maxYdeflection | maxY exit for deflecting cavities —

Y in local rfdevice’s coordinates
noYdeflection noY exit for deflecting cavities —

Y in local rfdevice’s coordinates

minYdeflection | minY exit for deflecting cavities —
Y in local rfdevice’s coordinates

After the base timing is determined, the RF phase (section 7.20) may be explicitly set via phaseAcc or
be determined by specifying maxGradient and a single fixed output quantity (fixEnergyGain,
fixMomentum, fixTransitTime, fixXdeflection, or fixYdeflection); the phase is then adjusted to satisfy the
conditions. If a fixed output quantity and the phaseAcc are set, but not maxGradient, both timeOffset and
maxGradient will be adjusted to satisfy the requirements (section 7.21).

Fixed output conditions
\ fixed output request \ units \ description

1/10/14 TIR G4beamline User’s Guide 161

fixEnergyGain MeV | energy gain during transit of timingVolume
fixMomentum MeV/c | momentum at the exit of the timingVolume
fixTransitTime nS total transit time of the timingVolume
fixXdeflection deg change of direction toward local X
fixYdeflection deg change of direction toward local Y

The Tune particle is repeatedly tracked through the cavity as many times as necessary to determine the
timing to the timingTolerance set accuracy. Independent of which method is used to determine the base
timing, timeOffset may be further adjusted to satisfy the requested conditions. The total number of
Tune particles/rfdevice is typically between 5 and ~200. To avoid logging them when using trace,
specity trace keep Tune=0.

For deflecting cavities, the deflections are in the coordinate system used to define a cavity, not the
global coordinate system, to avoid ambiguities when placing a cavity in the world.

If the final error on the requested output condition exceeds fixTolerance (the default is 1.E-3 in the same
units as the fixed output), G4beamline will exit with an error message.

Though it is rarely used, timelncrement is intended for exploring small phase errors of the RF. If
timelncrement is set nonzero, it is added to timeOffset after all other timing is complete, and the Tune
particle is then re-tracked. If the error on a fixed output condition then exceeds fixTolerance,
G4beamline will not report it as a an error.

Timing Algorithm

G4beamline launches a Tune particle; after each step when it is inside the rfdevice (section 5.49)
RfdeviceField: :UserSteppingAction is called. That routine may make changes to the
rfdevice and then push the particle back to the point where it first entered the rfdevice and the repeat the
process. Often multiple Tune (Event# -2) particles, or passes, are used to setup the RF device. The
routine’s only points of interest are the entrance and exit of the timingVolume. The routine is a state
machine associated with a single RF device described by rfdevice; the state is set before returning to
G4beamline.

UserSteppingAction goes through a number of states. Initially, upon first entering the rfdevice’s
timingVolume, it is in the ATWORKING UNKNOWN state; if sufficient information exists to
completely define the system, i.e. timeOffset and maxGradient both set explicitly, the state is set to
ATWORKING DONE. Otherwise, if timeOffset is set explicitly, the state is set to

ATWORKING BYPASS, and if not it is set to ATWORKING OFFSET. If no maxGradient is
specified, it is set to an estimated reasonable working value.

Upon entering the rfdevice’s timingVolume, various initializations are done, a snapshot is taken of
particle and the track is saved at that point. Control is returned to G4beamline and the particle
continues, with UserSteppingAction called each step, but it does nothing until the particle exits
the timingVolume. Then another snapshot is taken, various calculations are done, the conditions and

1/10/14 TIR G4beamline User’s Guide 162

state changed, and the track returned to the spot just inside the entrance of the timingVolume via the
saved track. Generally only one Tune particle enters the timingVolume, but many leave it.

It is important the maxStep used by the tracking not be too large. The default value is usually too large,
while ~Imm seems to work well.

If the state is ATWORKING OFFSET, the 1% pass is done with timingZero=0, the 2™ at 90° RF later.
The output AE, A(t-tarir), or Ay y may be approximated as:

O = A *sin(ot + o)
so taking the first two passes:

O;= A *sin(p)
0,= A * sin(n/2+@) = A * cos(@)

gives:

0= atan(Ol/Oz)
A=N(0, + 0,")

rfdeviceField: :UserSteppingAction algorithm logic states

timing state description

ATWORKING_UNKNOWN initial state — no processing done yet
ATWORKING_OFFSET multiple pass search defines 0° RF
ATWORKING_BYPASS iff total timing explicitly fixed
ATWORKING BASE single pass at 0° RF
ATWORKING_ESTIMATE 1* estimate to match requirements
ATWORKING_FINETUNE fine adjustments to match requirements
ATWORKING_FINAL final pass with final parameters
ATWORKING_DONE complete state — all processing done

1/10/14 TIR G4beamline User’s Guide 163

1/10/14 TIR

UNKNOWN

fimeOffset fied &
max Gradient fixed?

N

BYPASS

adjust max Gradient?

phaseAce fixed &
max Gradient fixed?

G4beamline User’s Guide

When using timingMethod=atZlocal, the 3" pass onward during state=ATWORKING OFFSET adjusts
the arrival time at timingAtZ to be 90° RF for a positive particle and 270° RF for a negative one. For all
other methods, the 3™ pass places the system near the method’s condition and a simple search is
conducted around it. The search continues until the time steps are smaller than timingTolerance.

These are used to place the system near the timingMethod’s desired condition; a simple search then
adjusts the value of timingZero to satisfy the condition to the desired timingTolerance accuracy, and
then does a single pass for state ATWORKING BASE. While the algorithm is working, timeOffset =
timingZero+timingPhase/®.

If the state is ATWORKING BYPASS and maxGradient was fixed, the state is changed to
ATWORKING FINAL and a final pass is done; otherwise, it is changed to ATWORKING BASE.

State ATWORKING_BASE just shows the path of the particle at 0° RF for verification. If phaseAcc
was set, it is added onto timeOffset and the state changed to ATWORK FINAL; otherwise, an estimate

based on the output amplitude and phase from the first 2 passes is used to generate appropriate values
for ATWORKING ESTIMATE.

After a single pass of state ATWORKING ESTIMATE, the state is changed to

ATWORKING FINETUNE and the routine searches for a nearby solution. If one is found, the state is
changed to ATWORKING FINAL. If maxGradient was a guess during the search for 0° RF, the whole
process is repeated from ATWORKING OFFSET using the new value of maxGradient as there may be
some dependence of the phasing on the gradient.

In the very rarely used case that timelncrement is set nonzero to study timing errors, timeOffset is
changed by that amount before the last pass without any further adjustments and the final fixTolerance
test is disabled for the ATWORKING FINAL.

The state ATWORKING_FINAL just tracks the particle though the rfdevice using the final timing and
maxGradient; this is important to ensure the next device sees the correct Tune particle. The state is then
changed to ATWORKING DONE. If the state is ATWORKING DONE, the routine always returns
and does nothing.

The choice of timingMethod becomes important when particles are moving slowly. For illustration,
compare the reference particle tracks through a single 201.25 MHz, 744 mm cavity for 45 MeV/c
(B=.39) 1" and (B=1) e with maxGradient=25 MV/m and phaseAcc=90 “RF using
timingMethod=maxE and atZ. The e trajectories are virtually identical for both methods, while the p*
trajectories display a distinct difference.

1/10/14 TIR G4beamline User’s Guide 165

45MeV/c e+,mu+ 1-cell cavity method=maxE atZ

45MeV/c e+,mu+ 1-cell cavity method=maxE atZ

30

Ez[MV/m]

T T T T
"mud5MEVc/maxE90/a.txt.reference” u 3:18
"mud5ME Vc/atZ90/atxt.reference” u 3:18
"e4SMEVc/maxE90/a.txt.ref" u 3:18

"ed45ME Vc/atZ90/a.txt.reference” u 3:18

Pz[MeV/c]

55

40

T T T T T T
"mud45MEVc/maxE90/a.txt.reference" u 3:6
"mu45SMEV c/atZ90/a.txt.reference” u 3:6
"e4SME Vc/maxE90/a.txt.ref" u 3:6

"e45MEV c/atZ90/a.txt.reference" u 3:6

L
1600

L
1800

L L L s
2200 2400 2600 2800

z[mm]

L
2000

3000

L
1600

L L L s
2200 2400 2600 2800

z[mm]

L L
1800 2000

3000

For a multicell cavity with an even number of cells the differences are much more pronounced, as

the center of the cavity will usually be a node in the field map. For example, consider a similar 2-cell
cavity again with 45 MeV/c u"and e". Fore', timingMethod=atZ atZlocal=0 phaseAcc=90 results in
no energy gain while timingMethod=atZ atZlocal=0 phaseAcc=180 gives the maximum energy gain,
the same as one gets using timingMethod=maxE phaseAcc=90. For p', the situation gets complicated,
but timingMethod=maxE phaseAcc=90 still returns the highest energy gain:

45MeV/c e+ 2-cell cavity - maxE phaseAcc=90, alZ phaseAcc=90, atZ phaseAcc=180

45MeV/c mu-+ 2-cell cavity - maxE phaseAcc=90, atZ phaseAcc=90, atZ phaseAcc=180

55
‘ ‘ ‘ ‘ "maxE90/a.ixtref" U3 ' ' ' " "maxEQ0/a.Ixtreference” U 3:6
65 | "atZ90/a.txt reference" u 3:6 "atZ90/a.txt reference" u 3:6
"atZ180/a.txt reference" u 3:6 "atZ180/a.txt.reference" u 3:6
60
0 0
~N ~
> >
0 sr 0]
i~ 1
2 2
N N
[an [N
50 L
45 4
35
I L ! L L L L L L L ! L
4000 4500 5000 5500 6000 6500 7000 7500 4000 4500 5000 5500 6000 6500 7000
z[mm] z[mm]

The old rfdevice set timing based on the middle of the cavity (for backward compatibility
timingMethod=atZ is still the default, but usually ought not to be used with fixed output options), setting

the maximum gradient over the RF cycle to 25 MV/m and placing a positive particle on-crest:

rfdevice rfl

1/10/14 TIR

maxStep=1 maxGradient=25 phaseAcc=90

G4beamline User’s Guide

7500

166

A typical case where a positive particle will see some synchrotron motion (later particles see more
acceleration, 20° before crest):

rfdevice telsa9cell ... maxStep=1 timingMethod=maxE \
phaseAcc=70 maxGradient=40

while to get the same synchrotron motion for a negative particle:

rfdevice tesla9cell ... maxStep=1 timingMethod=maxE \
phaseAcc=250 maxGradient=40

To specify the 8° before (negative) crest for e, but request that the output momentum be set to 3 GeV/c:

rfdevice cebaf7cell ... maxStep=1 timingMethod=maxE \
phaseAcc=262.0 fixMomentum=3000

Success ensures that the found maxGradient satisfies both |AtimeOffset|<timingTolerance and
|[P|-fixMomentum|<fixTolerance.

Building a Cryomodule

Complicated assemblies may be constructed in G4beamline using groups and macros. Since various
quantities often must be often passed to internal components, macros are used here to construct a
cryomodule.

A rfdevice need not have material walls — it may serve as merely a place to put a known RF field map.
This example rfdevice has no physical components, but does have a field and a timingVolume:

rfdevice RF2 innerLength=$Ldoublecell iris2iris-$cl \
frequency=$freqGHz fieldMapFile=RF2 1MV wot.BLfmt \
innerRadius=$innerPipe-$cl pipeThick=0 wallThick=0
\ irisRadius=$innerPipe-S$cl collarRadialThick=0 \
collarThick=0 winlThick=0 win2Thick=0 winMat=Vacuum
timingTolerance=0.000001 cavityMaterial=Vacuum \
maxStep=1 timingMethod=maxE timingDisplay=1

Rfdevice RF2 represents a cylindrical space of length $Ldoublecell iris2iris (reduced by a tiny
clearance $cl to avoid overlap) with a RF field described by the file RF2 1MV _wot .BLfmt. A

G4beamline visualization of RF2 would only show the timingVolume if timingDisplay!=0, and would
not show anything at all with timingDisplay=0.

The physical SRF cavity wall may be described as a polycone (section 5.51) made of niobium:
polycone doublecell \

z=%2210,%2z211,%$2212,$2213,5$2z214,$2215, ...,%2z2121 \
innerRadius=$r21i0, $r211,S$r2i2,%r2i3, ...,5r2i21 \

1/10/14 TIR G4beamline User’s Guide 167

outerRadius=$r200, $r20l, $r202,%r203, ...,5r2021 \
material=Nb

Both the rfdevice and polycone may be placed into a macro to keep them into the correct relationship. In
this case both the timeOffset and phaseAcc will be determined by the timing algorithm to satisty the
condition that the exiting Tune particle have total momentum Pout.

param RFcolor=0,0.8,0.8,0.6
$1 $2 $3
doublecellAssembly <z{mm}> <Pout{MeV/c}> <V{MV/m}>
#
define doublecellAssembly \
"place doublecell z=$1 color=S$cellcolor " \

"place RF2 z=$1 fixMomentum=$2 maxGradient=33 rename=rf2 #

(=7 ewer-0) (OpeninventorXt) (onjlabl3slabiorg). A F X
File Etc Help

Motion X Motion Y [ECTT T o Motion Z
doublecellAssembly
The macro may be used as:
i <z{mm}> <Pout{MeV/c}> <maxGradient {MV/m}>
doublecellAssembly 1000 250.0 23.09

Another macro describing a superconducting solenoid, its field map, counterwound conductors, and iron
shield may also be defined:

solenoidAssembly <z{mm}> <current{A}>
solenoidAssembly 500 1.5

Both macros, as well as a couple predefined fubs (section 5.77), may be placed inside yet another
macro that constructs a whole cryomodule:

S1 S$2 $3 $4
1/10/14 TIR G4beamline User’s Guide 168

middleCryomodule <z{mm}> <current{A}> <Pout{MeV/c}> <maxGradient{MV/m}>

#

define middleCryomodule \
"place beamPipe z=$1+Szo miPipe length=$LmiPipe-$cl rename=miPipe#"\
"solenoidAssembly $1+$zo misolenoid $2 $5"\
"doublecellAssembly $1+$zo midoublecell $3 $4"\
"place beamPipe z=51+$zo mivaPipe length=$LmivaPipe-$cl rename=mivaPipe#"\
"place valveAssembly z=$1+$Szo mivalve

Note that macros are invoked, while objects are placed. For example, to put this cryomodule off the Z
axis, one would need to modify the macro that defines the cryomodule to pass the x and y parameters to
each of the individual p/ace commands within each macro. Also note that when using field maps, the
current and maxGradient quantities multiply the quantities within the field maps, rather than being
absolute numbers.

viewer-0 (OpeninventorXt) (on jlabl2.jlab.org)

jod
]
fe
9|
N

Motion X Motion Y IR o0l Motion Z

middleCryomodule
To actually use the cryomodule:
#
<z> <current> <Pout> <maxGradient>

1/10/14 TIR G4beamline User’s Guide 169

middleCryomodule $Zcryo9 $39 SPo9 SVlimax
#

Other details, such as virtual detectors, cryostats, and absorbers may be added easily as required. In this
example, the polycone lay outside of the rfdevice, however, if tracking particles through the cavity far
off axis were required, the rfdevice could have been made larger and the polycone placed inside the
rfdevice, but outside of the timingVolume.

1/10/14 TIR G4beamline User’s Guide 170

9 File Formats

Note that ASCII file formats begin with comments (‘#’ in column 1) that give both the field names and
their units. The historoot program is able to use these comments to give names to the fields of such files
(it ignores the units, which are intended for humans).

9.1 BLTrackFile (generated by NTuple-s, read by beam)

The file format is ASCII:
Lines beginning with # are comments
First line is a structured comment (if not present the input
routine issues a warning):

#BLTrackFile ... user comment...
Second line is a comment giving the column names:

#x y z Px Py Pz t PDGid EvNum TrkId Parent weight
Third line is a comment giving the units:

#cm cm cm MeV/c MeV/c MeV/c ns - - - - -
OR:

#mm mm mm MeV/c MeV/c MeV/c ns - - - - -
(When writing, mm are used; on reading, mm are assumed, but a
comment line containing "cm cm cm" switches to cm.)
Thereafter follow the tracks, one per line. While the input
routine can handle initial spaces in the first column, it is
STRONGLY suggested you not put any there (so cut/grep will
work) . Any fixed or floating-point format will do; PDGid,
EV#, TrkId, and Parent are integers (but .00 can be appended).
Common PDGid-s:

L S e . S . S S R S S N S S TS S S S S

e- 11 e+ -11

mu- 13 mu+ -13

pi+ 211 pi- -211
proton 2212 anti proton -2212
neutron 2112 anti neutron -2112
gamma 22

9.2 Trace File

When writing track traces with format=ascii in the trace command, the output is as follows:

The first 12 columns are identical to those of BLTrackFile

Columns 13,14,15 give Bx,By,Bz in Tesla

Columns 16,17,18 vive Ex,Ey,Ez in MegaVolts/meter
The first 3 comment lines are similar to those of BLTrackFile, giving a comment, the column names,
and their units. All values are in the selected coordinates from the trace command (centerline, global, or
reference).

9.3 FORO009.DAT

NOTE: Because the FOR009.DAT format requires the particles be sorted
by region (JSRG), all tracks are stored in memory until close () 1is
called; the file is written at that time. The ICOOL region is
determined from the Z position of the track, and is simply
sequentially assigned as tracks at different Z positions are written.

L I .

1/10/14 TIR G4beamline User’s Guide 171

L S . SR S S . S . S S R . S . S S S . S S S S i SRR S .

The region is +-REGION SIZE in Z from the first track of each region.

XP[], PP[], BFLD[], and EFLD[] should all be converted to
Centerline coordinates before calling write().

This data format comes from ICOOL v 2.77, User's Guide section 4.2.3.
The first line of the file is the title.

The second and third lines are comments, supposedly units and column
labels.

There follow the tracks, one per line, sorted by "region". The first
track of each region should be the "reference" particle in ICOOL
parlance; in gd4beamline it is the reference particle -- if multiple
reference particles intersect the region, the first will be
"reference", and the following ones will be considered "beam".

The variables for each track are:

IEVT (I) event #
IPNUM (I) track # for this event
IPTYP (I) particle type: >0 for positive charge,

<0 for negative
l=e, 2=mu, 3=pi, 4=K, 5=proton

IPFLG (I) "flag", always O

JSRG (I) region number (see above)

TP (F) time (sec)

XP[3] (F) position (meters)

PP[3] (F) momentum (GeV/c)

BFLD[3] (F) Magnetic field (Tesla)
EVTWT (F) weight

EFLD[3] (F) Electric field (V/meter)
SARC (F) arclength (meter) -- set to 0.0
POL[3] (F) spin -- set to 0.0

Note that event 0 will be ignored, as that value of IEVT is
reserved for the reference particle.

9.4 BLFieldMap

L S S T . S S S S S S S S S .

Blank lines, and lines beginning with # or * are comments. Lines
beginning with * are printed to stdout. Units are mm for coordinates,
Tesla for B, and MegaVolts/meter for E; use normB and normE if the
data points use different units.

The input file starts with a set of commands to define the parameters
of the map, followed by blocks of lines containing the values of the

field components. The field component names depend on the type of map
(grid: Bx,By,Bz,Ex,Ey,Ez; cylinder: Br,Bz,Er,Ez).

Each command has a specific list of arguments to define parameters

of the map.

BEWARE: the parsing is not exhaustive. For instance, invalid arguments
are silently ignored (which means you must verify the spelling and
capitalization of argument names). Correct inputs will yield correct
results, but invalid inputs may not be detected and may yield
seemingly-correct but unintended results.

The first command is usually a param command, which has the following
arguments:

1/10/14 TIR G4beamline User’s Guide 172

maxline The maximum number of characters per line (default=1023)
current The current corresponding to this map (default=1.0)
gradient The gradient corresponding to the map (default=1.0)

normE A normalization factor for E components (default=1.0)

normB A normalization factor for B components (default=1.0)

Two types of maps are implemented: grid and cylinder.

grid maps are a 3-D grid, with each block of data being a single

X-Y plane; within a block the lines are Y and the columns of each line
are values along X.

The grid command has the following arguments:

X0 The X value for the first value in each line

YO The Y value for the first line in each block

Z0 The Z value for the first block of each field component
nX The number of columns per line

nY The number of lines per block

nz The number of blocks per field component

dx The X increment between values in each line

dy The Y increment between lines

dz The Z increment between blocks
tolerance The tolerance for pointwise data (default=0.01 mm)

After the grid command, the following optional commands can be given:

extendX flip=...

extendY flip=...

extendZ flip=...
These commands permit a half-map to be extended to the full map
around X=0, Y=0, or Z=0 respectively. The optional flip argument is a
comma-separated list of field components whose signs will be inverted
for negative values of the coordinate. For example, "extendZ flip=Bx,Ex"
means the map from Z=0 to Z=(nZ-1)*dZ is extended symmetrically around
Z=0 to negative Z values, flipping the signs of Bx and Ex when Z<O0.
This could be followed by "extendX flip=Bx,Ex", and the field flips
will be the products of both commands.

cylinder maps are a 2-D map with rotational symmetry around the Z axis.
Each field component has a single block with lines being Z and the
columns being R.

The cylinder command has the following arguments:

Z0 The Z value for the first line in each block
nR The number of columns per line
nz The number of lines per block
dR The R increment between colums
dz The Z increment between lines
tolerance The tolerance for pointwise data (default=0.01 mm)
After the cylinder command, the following optional commands can be

given:
extendZ flip=...
This command behaves the same as for the grid map.

After the commands, each block consists of a line containing the
name of the field component, followed by the lines of the block.
The values within a line can be separated by whitespace or a ','
followed by optional whitespace.

Field components that are not given are set to 0.0 everywhere.
Missing values will be considered to be 0.0.

For grid maps the first block is for Z=Z0, and successive blocks

L S R e S . S SR e S . S S S S S S SN R e SR S S . S . S S S S . S R e . S . S I I S R . S

1/10/14 TIR G4beamline User’s Guide 173

increment Z by dZ; the first line in a block is for Y=Y0 and the
first column in each line is for X=XO0.

For cylinder maps, the first line in each block is for Z=7Z0 and the
first column in each line is for R=0.

Instead of the blocked input format, a pointwise data format can be
used. This is introduced by a line containing the command "data",
followed by the individual points of the map, one per line.

for a grid field, each line contains values for
X,Y,72,Bx,By,Bz,Ex,Ey,Ez separated by either a comma and optional
whitespece or by whitespace. for a cylinder field each line contains
values for R,Z,Br,Bz,Er,Ez. The order of the points does not matter;
omitted grid points will be 0.0, and for duplicates the last entry
wins. If there is no E field, the Ex,Ey,Ez or Er,Ez entries should

be omitted on every line. NOTE: every line's X,Y,Z or R,Z must be

on a grid point as specified by the arguments to the grid or cylinder
commands, to within the tolerance specified; if not, an error message
is printed and the input line is ignored.

For time=dependent fields, the "time" command is used:

time [period=12]
period, if given, is in nanoseconds, and causes the interval [0,period)
to be extended forever (before and after the values given). Because of
the interpolation used, at least two points beyond the interval
boundaries should be provided; there need not be a point at either
boundary (but usually there are).
Following the time command are lines containing 2 or 3 doubles:

t B E
where t is the time (nanoseconds), and B and E are factors for the
fields. If E is omitted, the value for B is used. These values will
be interpolated in time with a cubic spline that can handle either
uniform or non-uniform spacing of points along t.
The time command can come either before or after the cylinder or grid
commands, but not within either of their sequences.
Note a cubic spline is used to interpolate between points, and that
can cause over/under-shoot near an abrupt change. Combined with period=
this gives an excellent representation of sinewave/cosinewave.

Note that time dependence can currently only be specified via the
time command in an input file (i.e. not programmable method exists).

Example block input file:

* this is an example BLFieldMap input file, suitable for a solenoid
grid interval is 1 cm.

The region of validity is -390<=Z<=390 and 0<=R<=90

param normB=1.0 current=1.0

cylinder Z0=0.0 nR=10 nZ=40 dR=10.0 dz=10.0

extendZ flip=Br

Bz

40 lines of 10 wvalues, Z=0 thru Z=390
Br

40 lines of 10 wvalues, Z=0 thru Z=390
--EQF--

Example pointwise input file:
* this is an example BLFieldMap input file, suitable for a solenoid

L S R e S . S SR e S . S S S S S S SN R e SR S S . S . S S S S . S R e . S . S I I S R . S

1/10/14 TIR G4beamline User’s Guide 174

b S . . . S

grid interval is 1 cm.
The region of
param normB=1.0 current=1.0

cylinder Z0=0.0 nR=10 nZ=40 dR=10.0 dZ=10.0
extendZ flip=Br

data

400 lines of 4 values, giving R,Z,Br,Bz

--EQF--

9.5 Window Files

Used by the absorber command.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

The file format is a series of lines:
First character # means comment, * means printed comment.

Comment and blank lines are ignored. Units are mm.
The first line contains the 4 flange variables:
innerR outerR insideZ outsideZ
The remaining lines contain 3 values for a given radius:
rzt
The first line must have r=0.0 and have the largest z value
and the largest z+t value. z is the inside of the window,

z+t is the outside of the window. All values must be positive.

Successive r values must increase by at least 0.010 mm.
Successive z values and z+t values must decrease by at least
0.010 mm.

flangelnnerRadius should equal the last r value.

Any z origin may be used (it will be subtracted away).

This is intended to be easy to interface to window design
spreadsheets (export a list of 3 columns delimited by spaces, then
add the appropriate comments and flange values at the top).

9.6 Root Files

The standard Root file format is used. All G4beamline outputs are TNtuple-s combined into a single
Root file whose name is given by the parameter histoFile. The TNtuple fields are the same as for

BLTrackFile and the Trace file above.

1/10/14 TIR G4beamline User’s Guide

validity is -390<=72<=390 and 0<=R<=90

175

10 Acknowledgments

The genesis of G4beamline was my desire to learn modern physics simulation codes, and Geant4
seemed to be the best choice. Parts of G4beamline’s design were inspired by the Beam Tools developed
at Fermilab [6] by Daniel Elvira, Paul Lebrun, Panagiotis Spentzouris, and others, even though almost
none of their code remains. The LISAPhysicsList came from the Geant4 collaboration, and the
MICEPhysicsList came from G4MICE developed by the MICE collaboration. The source files from
these external sources retain the original authors’ comments and disclaimers; they total less than 1% of
the G4beamline source code.

Geant4 [1] is a flexible and versatile toolkit for simulating the passage of particles through matter and
electromagnetic fields. This program literally would not have been possible without it. Thanks to the
entire Geant4 collaboration. This product includes software developed by Members of the Geant4
Collaboration (http://cern.ch/geant4).

CLHEP [2] is a comprehensive class library for High Energy Physics, and G4beamline literally would
not have been possible without it. Thanks to all of the CLHEP editors and authors.

The HistoScope program [3] is a marvelous program for generating and manipulating histograms. It has
a fine graphical user interface and can do just about everything one might want to do with histograms,
X-Y plots, scatter plots, 2-d histograms, and NTuples. Much thanks to the authors: Mark Edel,
Konstantine Iourha, Joy Kyriakopulos, Paul Lebrun, Jeff Kallenbach, and Baolin Ren; thanks also to
Fermilab for making it available. Unfortunately, it is no longer supported. It was the inspiration for
HistoRoot.

Root [5] is a programming environment intended for data analysis. It supports data files with a tree
structure, 1-D and 2-D histograms, X-Y plots, and NTuples. Accompanying G4beamline is historoot, a
root program that provides a graphical user interface to the histogram capabilities of Root — it was
inspired by the capabilities of HistoScope, with a completely different user interface. Of course, the
native Root tools can be used as well. Thanks to all of the Root developers.

The Coin 3-D graphics library [9] is licensed under the Gnu Public License, maintained by Kongsberg
SIM AS. This implements by far the best visualization driver for simulated systems and events.

The X-windows graphics libraries and the basic gcc libraries and compiler are also released under the

GPL and/or LGPL. Thanks to the entire open source community for making such a comprehensive
software development environment freely available.

1/10/14 TIR G4beamline User’s Guide 176

Appendix 1 — README.txt

G4beamline
by Tom Roberts
Copyright (C) 2003-2012 by Tom Roberts.
All rights reserved.

http://g4beamline.muonsinc.com

LICENSE

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

http://www.gnu.org/copyleft/gpl.html

GENERAL

The general reference for G4beamline is the User's Guide, located in the
doc directory named G4beamlineUsersGuide.pdf.
It is also available on the web: http://g4beamline.muonsinc.com

INSTALLATION

There is a "Quick Start" section in the User's Guide.
For details, see the README-*.txt file for your OS (appendices of the User's
Guide).

INITIAL TESTING

Be sure you have added the G4beamline programs to your PATH (see README-*.txt).

Execute the following commands (in a Cygwin shell on Windows):
source G4beamline-VERSION/bin/g4bl-setup.sh
cd G4beamline-VERSION/test
./loop

This will run a series of tests, with 1 line of description for each,
hopefully ending with "All Tests Passed" and starting over. If this fails,

1/10/14 TIR G4beamline User’s Guide 177

see README-*.txt for a description of what is required to run G4beamline.
For further assistance, you can join the G4beamline forum at
http://g4beamline.muonsinc.com

NOTE: On Windows you will need to setup the Cygwin environment. The Cygwin
environment is not needed to run G4beamline itself, it is needed just for
building the program and running the tests.

RUNNING THE PROGRAM -- GUI

Simply double-click the G4beamline icon. On Windows it is placed on your
desktop

and in the Start/G4beamline menu. On Mac OS X it is placed where you dragged
(copied) it when you installed it. On Linux the g4bl-icon script will create
one on your desktop.

To run the GUI program via the command line:

source G4beamline-VERSION/bin/g4bl-setup.sh

optionally cd where your input file is located

gd4blgui [input.file]
This requires Java and a display (X-Windows on Linux and Mac OS X, nothing
special on Windows). Its opening screen decribes how to use it.

To run the examples, simply push the Browse button, navigate to the install
directory / examples, and select Examplel.g4bl (or other *.g4bl file).

Then select the desired viewer (if any), and push the Run button. On Windows,
a copy of "G4beamline Examples" is put into "My Documents" (Windows Xp) or
"Documents" (Windows Vista). On Mac, there is a copy of G4beamlineExamples

on the install .dmg.

RUNNING THE PROGRAM -- COMMAND-LINE

For command-line use (Linux, Mac 0S X, and Windows with Cygwin), you must
add G4beamline's bin directory to your PATH:

source G4beamline-VERSION/bin/g4bl-setup.sh
You can put this into $HOME/.bash profile. There is also g4bl-setup.csh.

Then cd to whatever directory you plan to use for developing your
simulation(s), and execute:
g4bl -

After a few seconds it should type (with obvious variations):
G4BL_DIR=/Users/g4bl/G4beamline
G4LEDATA=/Users/g4bl/G4beamline/data/G4EMLOW6 .2
GALEVELGAMMADATA=/Users/g4bl/G4beamline/data/PhotonEvaporation2.0
DYLD LIBRARY PATH=/Users/g4bl/G4beamline/LibraryBinaries/Darwin-g++:
G4beamline Process ID 68927

khkkkhkhkkhkkhkhkhkkhkhhkhhkhdhkhhkhdhkhhhdhkhdhhdhkhdhhdhkhdhddhhdhhdhhdhddhkd,ddhkd,dxd,kd,*xd,k,x%x*%x

gdbeamline version: 2.10 (17-Dec-2011,14:14)
Copyright : Tom Roberts, Muons, Inc.

1/10/14 TIR G4beamline User’s Guide 178

License : Gnu Public License

WWW : http://g4beamline.muonsinc.com
kkhkkhkkhkhhhkhkkhkkhkkhkhhhhkkkhkhdhhhhkhkkhkhkhhhhhkkhkkhkhkhhhhkkhkkhkhkhhhhkkkkik,k,khkkkk,*,k,k,*k*x*x*%x

Geant4 version Name: geant4-09-04-patch-03 (9-December-2011)
Copyright : Geant4 Collaboration
Reference : NIM A 506 (2003), 250-303
WWW : http://cern.ch/geant4

kkhkkkhkhkkhkhkhkhkhkhkhkhhkhhkhhkhdhkhhhdhkhhhdhkhdhhdhkhdhddhhdhddhhdhhdhkhkd,hdhkd,*xd,kd k) kd,*x%x*%

geometry nPoints=100 printGeometry=0 visual=0
tolerance=0.002
cmd:

The program is now ready for input. Type "help" to get a short list of
the input-file commands, "help beam" to get help on the beam comand, or
"help *" for a detailed description of all commands. This is a useful way
to get help on commands when editing your input file(s). Type "C to exit
back to a shell prompt.

EXAMPLE 1

The first example input file is Examplel.gd4bl. It is a simple file to track
muons through l-meter drift spaces into 4 detectors. To visualize its
geometry using OpenInventor, execute:

cd G4beamline-VERSION/examples
g4bl examplel.g4bl viewer=best

To run the beam through the geometry, execute:
g4bl examplel.gédbl

This will generate a Root file named g4beamline.root. To view it do:
historoot g4beamline.root

OTHER EXAMPLES

There are other examples in the examples directory. See README.txt for details.

1/10/14 TIR G4beamline User’s Guide 179

Appendix 2 - README-Linux.txt

G4beamline on Linux (Intel)
G4beamline 2.14 November 2012 TJR

Note that the distributed 32-bit version of G4beamline for Linux was built on
Scientific Linux Fermi 4.8 (SLF 4.8). This is a derivative of RedHat
Enterprise Linux 4. It should run as is on any RedHat-derived Linux equal

or later than that. There is also a 64-bit distribution built on SLF 5.5.

Before installing G4beamline, you should first install:

openmotif -- should be available in your Linux distribution. Some
distributions install this automatically, some don't.
It provides libXm.so.

java - http://java.sun.com
Select "Java SE", and all you need is the Java Runtime Environment
(JRE); get the latest. If you have installed the development kit
(JDK) that includes the JRE.
Most distributions install this automatically.

You may need to install these:

xll-deprecated-libs -- should be available in your Linux distribution, but
the name may be different. Some distributions install this
automatically, some don't. It provides libXp.so.

compat-libstdc++.i386 -- should be available in your Linux distribution, but
the name may be different. Provides an older versin of
/usr/lib/libstdc++.so0.

You probably want to install the following:

Root - http://root.cern.ch
You may install any version of Root, because G4beamline is built with
its own instance of Root and is independent of whichever Root you
install. If you want to use HistoRoot, however, you should install
the version of Root from http://historoot.muonsinc.com.

You may want to install the following:

tcl - should be available in your Linux distribution. Required by most
of the tests, but g4beamline itself will run without it.
tcl can be installed after G4beamline, if desired.
Many distributions install this automatically.

To install G4beamline, download the tarball and un-tar it in your HOME
directory:
tar -xzf G4beamline-2.14-Linux.tgz
OR
tar -xzf G4beamline-2.14-Linux64.tgz
this will create a directory $HOME/G4beamline-2.14

1/10/14 TIR G4beamline User’s Guide 180

You need to put the G4beamline programs into your PATH:
source G4beamline-VERSION/bin/g4bl-setup.sh
You can put this into your $HOME/.bash profile. There is also g4bl-setup.csh.

You can create an icon on your Desktop via:

g4bl-icon
You can then copy or move it into any menu. This works for both KDE and
Gnome, and it probably works for other window managers.

Once gd4beamline has been put into your PATH, to run G4beamline simply do:
cd ..wherever...
g4bl input.file [name=value [...]]

You can also run the GUI version:
gd4blgui [input.file]

The default format for NTuples is now Root. To create histograms from NTuples
you can use Root in the usual way. That is rather complicated and un-obvious,
so you can download the HistoRoot program from http://historoot.muonsinc.com
-- it provides a GUI interface to Root plots and histograms.

For visualization, the OpenInventor viewer works fine, use viewer=best or

viewer=0IX. Other viewers are available.

TROUBLESHOOTING

Here is the output of 1ldd on Scientific Linux Fermi 4.8 (where the distribution
was built), showing which shared libraries are used, and where they come from.

$ 1dd g4beamline

1libGLU.so.1l => /usr/X11R6/1ib/1ibGLU.so.1l (0x0342a000)

libGL.so.l => /usr/X11R6/1ib/l1ibGL.so.1 (0x00d72000)

libXm.so.3 => /usr/X11R6/1lib/libXm.so.3 (0x00794000)

libXpm.so.4 => /usr/X11R6/1lib/libXpm.so.4 (0x0065£000)

libXmu.so.6 => /usr/X11R6/1lib/libXmu.so.6 (0x0077d000)

libXt.so0.6 => /usr/X11R6/1lib/libXt.so0.6 (0x006£c000)

libXext.s0.6 => /usr/X11R6/lib/libXext.so.6 (0x003c6000)

libX1ll.s0.6 => /usr/X11R6/1lib/1ibX1ll.so0.6 (0x002e5000)

libXi.so0.6 => /usr/X11R6/1lib/libXi.so.6 (0x00111000)

libSM.so0.6 => /usr/X11R6/1lib/l1ibSM.so.6 (0x00416000)

1libICE.s0.6 => /usr/X11R6/1ib/1ibICE.so0.6 (0x003e8000)

libCint.so => /home/tjrob/G4beamline-2.14/1ib/libCint.so (0x00de0000)

libCore.so => /home/tjrob/G4beamline-2.14/1ib/libCore.so (0x04a22000)

libMathCore.so => /home/tjrob/G4beamline-2.14/1lib/libMathCore.so
(0x0043d000)

libNet.so => /home/tjrob/G4beamline-2.14/1lib/libNet.so (0x00186000)

1ibRIO.so => /home/tjrob/G4beamline-2.14/1ib/1ibRIO.so (0x009cb000)

libThread.so => /home/tjrob/G4beamline-2.14/1ib/libThread.so (0x00119000)

libTree.so => /home/tjrob/G4beamline-2.14/1ib/libTree.so (0x00b45000)
libexpat.so.0 => /usr/lib/libexpat.so.0 (0x0028a000)

libdl.so.2 => /lib/libdl.so.2 (0x002d£f000)

libstdc++.s0.6 => /usr/lib/libstdc++.s0.6 (0x0297d000)

libm.so.6 => /lib/tls/libm.so.6 (0x002ba000)

1/10/14 TIR G4beamline User’s Guide

181

libgcc_s.so.l => /lib/libgcc _s.so.l (0x0015c000)

libc.so.6 => /lib/tls/libc.so.6 (0x06242000)

libpthread.so.0 => /lib/tls/libpthread.so.0 (0x00402000)
libXxf86vm.so.1l => /usr/X11R6/1ib/libXxf86vm.so.l (0x00101000)
libXp.so.6 => /usr/X11R6/1lib/libXp.so.6 (0x003d6000)
libcrypt.so.l => /1lib/libcrypt.so.l (0x005e0000)
/1lib/1ld-linux.so0.2 (0x0016e000)

Note that some motif/X11l shared libraries are included in the G4beamline
distribution (and remain local to it). This reduces the need for users to
install precisely the same version of these libraries as was used to build
g4beamline.

Here are the RPMs that provide these libraries in Scientific Linux Fermi 4.8:

glibc.i686 /1lib/tls/libpthread.so.0
glibc.i686 /1lib/libdl.so.2
xorg-x1ll1-Mesa-1ibGLU.i386 /usr/X11R6/1ib/1ibGLU.so.1
xorg-x1ll-Mesa-1ibGL.i386 /usr/X11R6/1ib/1ibGL.so.1
openmotif.i386 /usr/X11R6/1ib/1libXm.so.3
x0org-x11-1ibs.i386 /usr/X11R6/1ib/libXpm.so.4
x0org-x11-1ibs.i386 /usr/X11R6/1ib/libXmu.so.6
x0org-x11-1ibs.i386 /usr/X11R6/1ib/1ibXt.so0.6
x0org-x11-1ibs.i386 /usr/X11R6/1ib/libXext.so0.6
x0org-x11-1ibs.i386 /usr/X11R6/1ib/1ibX11l.s0.6
x0org-x11-1ibs.i386 /usr/X11R6/1ib/1ibXi.s0.6
x0org-x11-1ibs.i386 /usr/X11R6/1ib/1ibSM.so0.6
x0org-x11-1ibs.i386 /usr/X11R6/1ib/1ibICE.so0.6
libstdc++.1386 /usr/lib/libstdc++.s0.6
glibc.i686 /1lib/tls/libm.so.6
libgcc.i386 /lib/libgcc_s.so.1
glibc.i686 /1lib/tls/libc.so.6
xorg-x11-1libs.i386 /usr/X11R6/1lib/1ibXxf86vm.so.1
xorg-xll-deprecated-1ibs.i386 /usr/X11R6/1ib/1libXp.so.6

1/10/14 TIR G4beamline User’s Guide

182

Appendix 3 — README-Windows.txt

G4beamline on Windows XP, Windows Vista, and Windows 7
G4beamline 2.14 November 2012 TJR

Before installing G4beamline, you must first install:

Java - http://java.sun.com
Select "Java SE", and all you need is the Java Runtime Environment
(JRE); get the latest. If you have installed the development kit
(JDK), that includes the JRE.

You may want to install:

Root - http://root.cern.ch or http://historoot.muonsinc.com
You may install any version of Root, because G4beamline is built with
its own instance of Root and is independent of whichever Root you
install. If you want to use HistoRoot, however, you should install
the version of Root from http://historoot.muonsinc.com.

Cygwin - http://cygwin.com
This is a UNIX-like command-line environment for Windows.
Select "Install Cygwin now". This will download Cygwin's
setup.exe. Run it, select a mirror site, and you will have the
opportunity to select packages. You should select at least one
editor of your choice (vi, emacs, or ...). You must also select
tcltk, which is in the Libs category. You can add or remove
packages at any time by re-running the Cygwin setup.exe.
Install it into the default directory, C:\cygwin

To install G4beamline, download G4beamline-2.14.msi and run it. Follow the
usual
directions for installing packages into Windows. The installer will install
shortcuts for G4beamline and Historoot onto your desktop and into the Start
menu.

If you have installed Cygwin, then if you want to run G4beamline from
its command line, do this in a Cygwin shell:

source "C:/Program Files/MuonsInc/G4beamline/bin/g4bl-setup.sh"
The puts G4beamline into your PATH. Then do:

cd ...wherever...

g4bl input.file [name=value [...]]

The default format for NTuples is now Root. To create histograms from NTuples
you can use Root in the usual way. That is rather complicated and un-obvious,
so you can download the HistoRoot program from http://historoot.muonsinc.com .

For visualization, the OpenInventor viewer works fine, simply select

"best" from the viewer panel of the G4beamline window. Other viewers
are available.

1/10/14 TIR G4beamline User’s Guide 183

Appendix 4 - README-MacOSX.txt

G4beamline on Mac 0S X (Intel)
G4beamline 2.14 November 2012 TJR

This version of G4beamline was built and tested on Snow Leopard

(Mac OS X 10.6.8); it runs on Snow Leopard (Mac OS X 10.6.8) and Lion (10.7.2).
G4beamline has been used in the past on Tiger (10.4.x) and Leopard (10.5.x),
but now must be built from source to run there (see BUILD.txt).

Note: PowerPC binaries are not available. It is expected that installing
G4beamline from source should work on older Macs running Tiger or later,
and at least one user has had success doing this.

Before installing G4beamline, you probably want to install this:
Java - installed by default as part of Mac OS X.

Root - http://root.cern.ch or http://historoot.muonsinc.com
You may install any version of Root, because G4beamline is built with
its own instance of Root and is independent of whichever Root you
install. If you want to use HistoRoot, however, you should install
the version of Root from http://historoot.muonsinc.com.

To install G4beamline, download the installer .dmg from
http://g4beamline.muonsinc.com

Open it, and drag the application icon into /Applications (requires

administrator privileges; if you can't do that, drag it into your Home or to

your Desktop). You can then drag it into the Dock, if desired.

You can run it in the usual way by double-clicking on the icon (single-click
in the dock).

If you want to run the programs from the command line, you need to put the
G4beamline programs into your PATH:

source /Applications/G4beamline.app/Contents/Resources/bin/g4bl-setup.sh
This can be put into your S$HOME/.bash profile. There is also g4bl-setup.csh.

Once gdbeamline has been put into your PATH, to run G4beamline simply do:
cd ...wherever...
g4bl input.file [name=value [...]]

You can also run the Graphical User Interface:
gd4blgui [input.file]

The default format for NTuples is now Root. To create histograms from NTuples
you can use Root in the usual way. That is rather complicated and un-obvious,
but you can download the HistoRoot program from http://historoot.muonsinc.com
-- it provides a GUI interface to Root plots and histograms.

For visualization, the OpenInventor viewer works fine, use viewer=best or
viewer=0IX. Other viewers are available.

1/10/14 TIR G4beamline User’s Guide 184

TROUBLESHOOTING

Here is the result of "otool -L" on Mac 0S X 10.6.8 (Intel). This shows what
shared libraries are used. Libraries in /usr are from the 0S; those in /sw are
from Fink.

$ otool -L g4d4beamline
g4beamline:

@rpath/l1ibCint.so (compatibility version 0.0.0, current version 0.0.0)

@rpath/libCore.so (compatibility version 0.0.0, current version 0.0.0)

@rpath/libMathCore.so (compatibility version 0.0.0, current version 0.0.0)

@rpath/libNet.so (compatibility version 0.0.0, current version 0.0.0)

@rpath/1ibRIO.so (compatibility version 0.0.0, current version 0.0.0)

@rpath/libThread.so (compatibility version 0.0.0, current version 0.0.0)

@rpath/libTree.so (compatibility version 0.0.0, current version 0.0.0)

/usr/X11/1ib/1ibGLU.1l.dylib (compatibility version 1.3.0, current version
1.3.0)

/usr/X11/1ib/1ibGL.1.dylib (compatibility version 1.2.0, current version
1.2.0)

/sw/lib/1ibXm.2.dylib (compatibility version 3.0.0, current version 3.1.0)

/usr/X11/1ib/1libXpm.4.dylib (compatibility version 16.0.0, current version
16.0.0)

/usr/X11/1ib/libXmu.6.dylib (compatibility version 9.0.0, current version
9.0.0)

/usr/X11/1ib/1ibXt.6.dylib (compatibility version 7.0.0, current version
7.0.0)

/usr/X11/1lib/libXext.6.dylib (compatibility version 11.0.0, current
version 11.0.0)

/usr/X11/1ib/1ibX11.6.dylib (compatibility version 9.0.0, current version
9.0.0)

/usr/X11/1ib/1ibXi.6.dylib (compatibility version 7.0.0, current version
7.0.0)

/usr/X11/1ib/1ibSM.6.dylib (compatibility version 7.0.0, current version
7.0.0)

/usr/X11/1ib/1ibICE.6.dylib (compatibility version 10.0.0, current version
10.0.0)

/usr/lib/libexpat.l.dylib (compatibility version 7.0.0, current version
7.2.0)

/usr/lib/libstdc++.6.dylib (compatibility version 7.0.0, current version
7.9.0)

/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version
125.2.11)

Note that 1libXm.2.dylib is included in the G4beamline distribution and should
not be a problem. If it is a problem, it comes from Fink in the package
"lesstif" (the Fink implementation of the Motif graphical widgets).

The @rparh libraries are for Root, and are also included in the distribution.

1/10/14 TIR G4beamline User’s Guide 185

Appendix 5 — Annotated Output from Example1.g4bl

Note that Geant4 outputs considerable detail to stdout. Annotations below are headings inserted into the
output text.

First, the g4bl script outputs environment variables:

G4BL DIR=/Users/g4bl/G4beamline-2.11
G4ABLADATA=/Users/g4bl/G4beamline-2.11/Geant4Data/G4ABLA3.0
GALEDATA=/Users/g4bl/G4beamline-2.11/Geant4Data/G4EMLOWG .23
GANEUTRONHPDATA=/Users/g4bl/G4dbeamline-2.11/Geant4Data/G4NDL4. 0
G4ANEUTRONXSDATA=/Users/g4bl/G4beamline-2.11/Geant4Data/GANEUTRONXS1 .1
G4PIIDATA=/Users/g4bl/G4beamline-2.11/Geant4Data/G4PII1.3
G4LEVELGAMMADATA=/Users/g4bl/G4beamline-2.11/Geant4Data/PhotonEvaporation?2.?2
G4RADIOACTIVEDATA=/Users/g4bl/G4beamline-2.11/Geant4Data/RadiocactiveDecay3.4
G4AREALSURFACEDATA=/Users/g4bl/G4beamline-2.11/Geant4Data/RealSurfacel.0

DYLD LIBRARY PATH=/Users/g4bl/G4beamline-2.11/1ib:

G4beamline Process ID 30447

G4beamline outputs its identification:

KK AR KA KR A A KR A A KA A KR AR A AR A AR A AR A AR AR I AR I AR A AR A AR A A A AR A A AR R Ak ko kK

g4beamline version: 2.11 (19-Apr-2012-17:00)
Copyright : Tom Roberts, Muons, Inc.
License : Gnu Public License

WWW : http://gdbeamline.muonsinc.com
R I b b b b Ib 2h S A b b b b b Ib dh S S b b b b b Sb db S S b b b b Sb Sb (db S b b b b Sb Sb gb S g b b b b (Sb Sh db db g b b 4
Geant4 version Name: geant4-09-05-patch-01 (20-March-2012)
Copyright : Geant4 Collaboration
Reference : NIM A 506 (2003), 250-303
WWW : http://cern.ch/geant4
RR AR I b b b b b Ih S S b b b b b 2b Sb S S b b b b b Sb (db S b b b b (b Sb Sb ab 4 b b b b (Sb Sb Sb S g b b b b (Sh Sh Sh db g b b b 4
geometry nPoints=100 printGeometry=0 visual=0
tolerance=0.002

Here are some lines beginning with ‘*’ from the input file:

* Examplel.g4bl - simple first example

*

* Simple example g4beamline input file:

* a 200 MeV mu+ Gaussian beam is tracked through l-meter drift
*

spaces into four detectors

Some output from the physics command comes before the command itself:
G4PhysListFactory: :GetReferencePhysList <QGSP_BERT> EMoption= 0
<<< Geant4 Physics List simulation engine: QGSP BERT 3.4

<<< Reference Physics List QGSP_BERT is built

physics QGSP_BERT disable= inactivate= deactivate= doStochastics=1
minRangeCut=1 1list=0 gammaToMuPair=0 spinTracking=0
synchrotronRadiation=0 synchrotronRadiationMuon=0

Next is the beam command:

beam GAUSSIAN particle=mu+ nEvents=1000 firstEvent=-1 lastEvent=2147483647
beamX=0.0 beam¥Y=0.0 beamZ=0.0 maxR=1000000.0
meanMomentum=200.0 weight=1.000000

1/10/14 TIR G4beamline User’s Guide 186

sigmaX=10.0 sigma¥=10.0 sigmaZ=0.0 sigmaXp=0.10000 sigma¥Yp=0.10000
sigmaP=4.0 sigmaT=0.000 meanXp=0.00000 mean¥Yp=0.00000 meanT=0.000

The rest of the commands from the input file:

reference particle=mu+ beamX=0 beam¥Y=0 beamZ=0 beamT=0
rotation= referenceMomentum=200 beamXp=0 beam¥Yp=0
meanMomentum=200 meanXp=0 meanYp=0 tuneZ=-3.7e+21
tuneMomentum=-3.7e+21 tolerance=0.001] noEfield=0
noEloss=0

box BeamVis height=100 width=100 length=0.1 maxStep=100
material=Vacuum color=1,0,0 kill=0

place BeamVis copies=1 x=0.0 y=0.0 z=0.0

virtualdetector Det radius=1000 innerRadius=0 height=2000 width=2000
length=1 maxStep=100 material= color=0,1,0
noSingles=0 format= filename= file= require=
referenceParticle=0 coordinates=Centerline kill=0

place Det copies=1 x=0.0 y=0.0 z=1000.0 rename='Det#'
place Det copies=1 x=0.0 y=0.0 z=2000.0 rename='Det#'
place Det copies=1 x=0.0 y=0.0 z=3000.0 rename='Det#'
place Det copies=1 x=0.0 y=0.0 z=4000.0 rename='Det#'

The World size is printed:
World size (before incrementing by 201.357 mm): 2000.0 H 2000.0 w 8001.0 L

The final values of the parameters are printed:
PARAMETERS :
Zcl=4000.5
deltaChord=3.0
deltaIntersection=0.1
deltaOneStep=0.01
epsMax=0.05
epsMin=2.5e-7
eventTimeLimit=30
histoFile=g4beamline
histoUpdate=0
maxStep=100.0
minStep=0.01
steppingFormat=N GLOBAL CL KE STEP VOL PROCESS
steppingVerbose=0
viewer=none
worldMaterial=Vacuum
zTolerance=2.0

Now a line for the construction of each Element is printed:
BLCMDbox: :Construct BeamVis parent= relZ=0.0 globZ=0.0

zmin=-0.1 zmax=0.1
BLCMDvirtualdetector::Construct Detl parent= relZ=1000.0 globzZ=1000.
BLCMDvirtualdetector::Construct Det2 parent= relZ=2000.0 globzZ=2000.
BLCMDvirtualdetector::Construct Det3 parent= relZ=3000.0 globzZ=3000.
BLCMDvirtualdetector::Construct Detd parent= relZ=4000.0 globzZ=4000.

o O O o

A comment from the Geant4 Physics List:
Adding tracking cuts for neutron TimeCut(ns)= 10000 KinEnergyCut (MeV)= 0

The Geometry test results:

1/10/14 TIR G4beamline User’s Guide 187

Geometry test nPoints=100 tolerance=0.002 mm:
Testing geometry for children of group 'World':
Total geometry errors = 0 0 seconds

Now the Tune Particle is prepared and simulated (nothing to tune in this simulation):
Prepare Tune Particle(s) ===========

***% NOTE: All stochastic processes are disabled!

Begin Tune Particle(s) =============

Run complete 1 Events 0 seconds

The Reference Particle is tracked:
Begin Reference Particle(s) ===============
Run complete 1 Events 0 seconds

Stochastic processes are enabled after the reference particle:
Stochastic processes are enabled.

Preparation to track the beam:
Prepare Tracklng Beam ===
Stochastic processes are enabled.

And the beam is tracked (timing summaries are spaced out to avoid too much output):
Begin Tracking Beam ===============

Event 1 Completed 1 events realTime=1 sec 1.0 ev/sec
Event 2 Completed 2 events realTime=1 sec 2.0 ev/sec
Event 3 Completed 3 events realTime=1 sec 3.0 ev/sec
Event 4 Completed 4 events realTime=1 sec 4.0 ev/sec
Event 5 Completed 5 events realTime=1 sec 5.0 ev/sec
Event 6 Completed 6 events realTime=1 sec 6.0 ev/sec
Event 7 Completed 7 events realTime=1 sec 7.0 ev/sec
Event 8 Completed 8 events realTime=1 sec 8.0 ev/sec
Event 9 Completed 9 events realTime=1 sec 9.0 ev/sec
Event 10 Completed 10 events realTime=1 sec 10.0 ev/sec
Event 20 Completed 20 events realTime=1 sec 20.0 ev/sec
Event 30 Completed 30 events realTime=1 sec 30.0 ev/sec
Event 40 Completed 40 events realTime=1 sec 40.0 ev/sec
Event 50 Completed 50 events realTime=1 sec 50.0 ev/sec
Event 60 Completed 60 events realTime=1 sec 60.0 ev/sec
Event 70 Completed 70 events realTime=1 sec 70.0 ev/sec
Event 80 Completed 80 events realTime=1 sec 80.0 ev/sec
Event 90 Completed 90 events realTime=1 sec 90.0 ev/sec

Event 100 Completed 100 events realTime=1 sec 100.0 ev/sec

Event 200 Completed 200 events realTime=1 sec 200.0 ev/sec
Event 300 Completed 300 events realTime=1 sec 300.0 ev/sec
Event 400 Completed 400 events realTime=1 sec 400.0 ev/sec
Event 500 Completed 500 events realTime=1 sec 500.0 ev/sec
Event 600 Completed 600 events realTime=1 sec 600.0 ev/sec
Event 700 Completed 700 events realTime=1 sec 700.0 ev/sec
Event 800 Completed 800 events realTime=1 sec 800.0 ev/sec

Event 900 Completed 900 events realTime=1 sec 900.0 ev/sec
Event 1000 Completed 1000 events realTime=1 sec 1000.0 ev/sec

Finally the run is finished; a summary of NTuples is printed:
Run complete 1000 Events 1 seconds

NTuple Detl 1002 entries
NTuple Det2 1003 entries
NTuple Det3 999 entries
1/10/14 TIR G4beamline User’s Guide

188

NTuple Det4d 953 entries
NTuple wrote Root File 'g4beamline.root'

A summary of all Exceptions is printed (a list of how many of each type is also printed):
Exceptions: 0 Fatal, 0 Events Aborted, 0 Stuck Tracks (stopped), 0 Warnings

The simulation is over:
g4beamline: simulation complete -- exiting

1/10/14 TIR G4beamline User’s Guide 189

Appendix 6 — Particle IDs

B+

B-

BO

BsO0

D+

D-

DO

Ds+

Ds-
GenericIon
He3

J/psi
N(1440)+
N(1440)0
N(1520)+
N(1520)0
N(1535)+
N(1535)0
N(1650)+
N(1650)0
N(1675)+
N(1675)0
N(1680)+
N(1680)0
N(1700)+
N(1700)0
N(1710)+
N(1710)0
N(1720)+
N(1720)0
N(1900)+
N(1900)0
N(1990)+
N(1990)0
N(2090)+
N(2090)0
N(2190)+
N(2190)0
N(2220)+
N(2220)0
N(2250)+
N(2250)0
a0(1450)+
al0(1450)-
a0(1450)0
a0(980)+
a0(980)-
a0(980)0
al(1260)+
al(1260)-
al(1260)0
a2(1320)+

1/10/14 TIR

PDGid=521
PDGid=-521
PDGid=511
PDGid=531
PDGid=411
PDGid=-411
PDGid=421
PDGid=431
PDGid=-431
PDGid=0
PDGid=1000020030
PDGid=443
PDGid=12212
PDGid=12112
PDGid=2124
PDGid=1214
PDGid=22212
PDGid=22112
PDGid=32212
PDGid=32112
PDGid=2216
PDGid=2116
PDGid=12216
PDGid=12116
PDGid=22124
PDGid=21214
PDGid=42212
PDGid=42112
PDGid=32124
PDGid=31214
PDGid=42124
PDGid=41214
PDGid=12218
PDGid=12118
PDGid=52214
PDGid=52114
PDGid=2128
PDGid=1218
PDGid=100002210
PDGid=100002110
PDGid=100012210
PDGid=100012110
PDGid=10211
PDGid=-10211
PDGid=10111
PDGid=9000211
PDGid=-9000211
PDGid=9000111
PDGid=20213
PDGid=-20213
PDGid=20113
PDGid=215

G4beamline User’s Guide

190

a2(1320)- PDGid=-215
a2(1320)0 PDGid=115
alpha PDGid=1000020040
anti_ BO PDGid=-511
anti Bs0 PDGid=-531
anti DO PDGid=-421
anti N(1440)+ PDGid=-12212
anti N(1440)0 PDGid=-12112
anti N(1520)+ PDGid=-2124
anti N(1520)0 PDGid=-1214
anti N(1535)+ PDGid=-22212
anti N(1535)0 PDGid=-22112
anti N(1650)+ PDGid=-32212
anti N(1650)0 PDGid=-32112
anti N(1675)+ PDGid=-2216
anti N(1675)0 PDGid=-2116
anti N(1680)+ PDGid=-12216
anti N(1680)0 PDGid=-12116
anti N(1700)+ PDGid=-22124
anti N(1700)0 PDGid=-21214
anti N(1710)+ PDGid=-42212
anti N(1710)0 PDGid=-42112
anti N(1720)+ PDGid=-32124
anti N(1720)0 PDGid=-31214
anti N(1900)+ PDGid=-42124
anti N(1900)0 PDGid=-41214
anti N(1990)+ PDGid=-12218
anti N(1990)0 PDGid=-12118
anti N(2090)+ PDGid=-52214
anti N(2090)0 PDGid=-52114
anti N(2190)+ PDGid=-2128
anti N(2190)0 PDGid=-1218
anti N(2220)+ PDGid=-100002210
anti N(2220)0 PDGid=-100002110
anti N(2250)+ PDGid=-100012210
anti N(2250)0 PDGid=-100012110
anti b quark PDGid=-5
anti c_quark PDGid=-4
anti d quark PDGid=-1
anti ddl diquark PDGid=-1103
anti delta(1600)+ PDGid=-32214
anti delta(1600)++ PDGid=-32224
anti delta(1600)- PDGid=-31114
anti delta(1600)0 PDGid=-32114
anti delta(1620)+ PDGid=-2122
anti delta(1620)++ PDGid=-2222
anti delta(1620)- PDGid=-1112
anti delta(1620)0 PDGid=-1212
anti delta(1700)+ PDGid=-12214
anti delta(1700)++ PDGid=-12224
anti delta(1700)- PDGid=-11114
anti delta(1700)0 PDGid=-12114
anti delta(1900)+ PDGid=-12122
anti delta(1900)++ PDGid=-12222
anti delta(1900)- PDGid=-11112

1/10/14 TIR G4beamline User’s Guide 191

anti delta(1900)0 PDGid=-11212
anti delta(1905)+ PDGid=-2126
anti delta(1905)++ PDGid=-2226
anti delta(1905)- PDGid=-1116
anti delta(1905)0 PDGid=-1216
anti delta(1910)+ PDGid=-22122
anti delta(1910)++ PDGid=-22222
anti delta(1910)- PDGid=-21112
anti delta(1910)0 PDGid=-21212
anti delta(1920)+ PDGid=-22214
anti delta(1920)++ PDGid=-22224
anti delta(1920)- PDGid=-21114
anti delta(1920)0 PDGid=-22114
anti delta(1930)+ PDGid=-12126
anti delta(1930)++ PDGid=-12226
anti delta(1930)- PDGid=-11116
anti delta(1930)0 PDGid=-11216
anti delta(1950)+ PDGid=-2218
anti delta(1950)++ PDGid=-2228
anti delta(1950)- PDGid=-1118
anti delta(1950)0 PDGid=-2118
anti delta+ PDGid=-2214
anti delta++ PDGid=-2224

anti_delta-
anti_delta0
anti k(1460)0

PDGid=-1114
PDGid=-2114
PDGid=-100311

anti kO star(1430)0 PDGid=-10311
anti k1(1270)0 PDGid=-10313
anti k1(1400)0 PDGid=-20313
anti k2(1770)0 PDGid=-10315
anti k2 star(1430)0 PDGid=-315
anti k2 star(1980)0 PDGid=-100315
anti k3 star(1780)0 PDGid=-317
anti k star(1410)0 PDGid=-100313
anti k star(1680)0 PDGid=-30313

anti_k star0 PDGid=-313

anti_ kaon0 PDGid=-311

anti lambda PDGid=-3122

anti lambda(1405) PDGid=-13122

anti lambda(1520)
anti lambda(1600)
anti lambda(1670)
anti lambda(1690)
anti lambda(1800)
anti lambda(1810)
anti lambda(1820)
anti lambda(1830)
anti lambda(1890)
anti lambda(2100)
anti lambda(2110)

PDGid=-3124

PDGid=-23122
PDGid=-33122
PDGid=-13124
PDGid=-43122
PDGid=-53122
PDGid=-3126

PDGid=-13126
PDGid=-23124
PDGid=-3128

PDGid=-23126

anti_ lambda c+ PDGid=-4122

anti neutron PDGid=-2112
anti nu e PDGid=-12
anti nu mu PDGid=-14
anti nu_tau PDGid=-16

1/10/14 TIR

G4beamline User’s Guide

192

anti omega- PDGid=-3334
anti omega c0 PDGid=-4332
anti_ proton PDGid=-2212
anti_ s _quark PDGid=-3
anti sdO0 diquark PDGid=-3101
anti sdl diquark PDGid=-3103
anti sigma(1385)+ PDGid=-3224
anti sigma(1385)- PDGid=-3114
anti sigma(1385)0 PDGid=-3214

anti sigma(1660)+ PDGid=-13222
anti sigma(1660)- PDGid=-13112
anti sigma(1660)0 PDGid=-13212
anti sigma(1670)+ PDGid=-13224
anti sigma(1670)- PDGid=-13114
anti sigma(1670)0 PDGid=-13214
anti sigma(1750)+ PDGid=-23222
anti sigma(1750)- PDGid=-23112
anti sigma(1750)0 PDGid=-23212

anti sigma(1775)+ PDGid=-3226
anti sigma(1775)- PDGid=-3116
anti sigma(1775)0 PDGid=-3216

anti sigma(1915)+ PDGid=-13226
anti sigma(1915)- PDGid=-13116
anti sigma(1915)0 PDGid=-13216
anti sigma(1940)+ PDGid=-23224
anti sigma(1940)- PDGid=-23114
anti sigma(1940)0 PDGid=-23214

anti sigma(2030)+ PDGid=-3228
anti sigma(2030)- PDGid=-3118
anti sigma(2030)0 PDGid=-3218
anti sigma+ PDGid=-3222
anti sigma- PDGid=-3112
anti sigma0 PDGid=-3212
anti sigma c+ PDGid=-4212
anti sigma c++ PDGid=-4222
anti sigma c0 PDGid=-4112
anti ssl diquark PDGid=-3303
anti su0_diquark PDGid=-3201
anti sul diquark PDGid=-3203
anti t quark PDGid=-6
anti u _quark PDGid=-2
anti udO0_diquark PDGid=-2101
anti udl diquark PDGid=-2103
anti uul diquark PDGid=-2203
anti xi(1530)- PDGid=-3314
anti xi(1530)0 PDGid=-3324
anti xi(1690)- PDGid=-23314
anti xi(1690)0 PDGid=-23324
anti xi(1820)- PDGid=-13314
anti xi(1820)0 PDGid=-13324
anti xi(1950)- PDGid=-33314
anti xi(1950)0 PDGid=-33324
anti xi(2030)- PDGid=-13316
anti xi(2030)0 PDGid=-13326
anti xi- PDGid=-3312

1/10/14 TIR

G4beamline User’s Guide

193

anti_ xio0
anti xi c+
anti xi cO
b1(1235)+
b1(1235)-
b1(1235)0
b_quark
c_quark
chargedgeantino
d_quark

ddl diquark
delta(1600)+
delta(1600)++
delta(1600)-
delta(1600)0
delta(1620)+
delta(1620)++
delta(1620)-
delta(1620)0
delta(1700)+
delta(1700)++
delta(1700)-
delta(1700)0
delta(1900)+
delta(1900)++
delta(1900)-
delta(1900)0
delta(1905)+
delta(1905)++
delta(1905)-
delta(1905)0
delta(1910)+
delta(1910)++
delta(1910)-
delta(1910)0
delta(1920)+
delta(1920)++
delta(1920)-
delta(1920)0
delta(1930)+
delta(1930)++
delta(1930)-
delta(1930)0
delta(1950)+
delta(1950)++
delta(1950)-
delta(1950)0
delta+
delta++
delta-

deltal
deuteron

e+

e_

eta

1/10/14 TIR

PDGid=-3322
PDGid=-4232
PDGid=-4132
PDGid=10213
PDGid=-10213
PDGid=10113
PDGid=5
PDGid=4
PDGid=0
PDGid=1
PDGid=1103
PDGid=32214
PDGid=32224
PDGid=31114
PDGid=32114
PDGid=2122
PDGid=2222
PDGid=1112
PDGid=1212
PDGid=12214
PDGid=12224
PDGid=11114
PDGid=12114
PDGid=12122
PDGid=12222
PDGid=11112
PDGid=11212
PDGid=2126
PDGid=2226
PDGid=1116
PDGid=1216
PDGid=22122
PDGid=22222
PDGid=21112
PDGid=21212
PDGid=22214
PDGid=22224
PDGid=21114
PDGid=22114
PDGid=12126
PDGid=12226
PDGid=11116
PDGid=11216
PDGid=2218
PDGid=2228
PDGid=1118
PDGid=2118
PDGid=2214
PDGid=2224
PDGid=1114
PDGid=2114
PDGid=1000010020
PDGid=-11
PDGid=11
PDGid=221

G4beamline User’s Guide

eta(1295)
eta(1405)
eta(1475)
eta2(1645)
eta2(1870)
eta_prime
£0(1370)
£0(1500)
£0(1710)
£0(600)
£0(980)
£1(1285)
£1(1420)
£2(1270)
£2(1810)
£2(2010)

f2 prime(1525)
gamma

geantino

gluon

h1(1170)
h1(1380)
k(1460)+
k(1460)-
k(1460)0

kO star(1430)+
kO star(1430)-
kO _star(1430)0
k1(1270)+
k1(1270)-
k1(1270)0
k1(1400)+
k1(1400)-
k1(1400)0
k2(1770)+
k2(1770)-
k2(1770)0

k2 star(1430)+
k2 star(1430)-
k2 star(1430)0
k2 star(1980)+
k2 star(1980)-
k2 star(1980)0
k3 _star(1780)+
k3 _star(1780)-
k3 _star(1780)0
k _star(1410)+
k star(1410)-
k_star(1410)0
k star(1680)+
k star(1680)-
k star(1680)0
k_star+
k_star-
k_staro0

1/10/14 TIR

PDGid=100221
PDGid=9020221
PDGid=100331
PDGid=10225
PDGid=10335
PDGid=331
PDGid=10221
PDGid=9030221
PDGid=10331
PDGid=9000221
PDGid=9010221
PDGid=20223
PDGid=20333
PDGid=225
PDGid=9030225
PDGid=9060225
PDGid=335
PDGid=22
PDGid=0
PDGid=21
PDGid=10223
PDGid=10333
PDGid=100321
PDGid=-100321
PDGid=100311
PDGid=10321
PDGid=-10321
PDGid=10311
PDGid=10323
PDGid=-10323
PDGid=10313
PDGid=20323
PDGid=-20323
PDGid=20313
PDGid=10325
PDGid=-10325
PDGid=10315
PDGid=325
PDGid=-325
PDGid=315
PDGid=100325
PDGid=-100325
PDGid=100315
PDGid=327
PDGid=-327
PDGid=317
PDGid=100323
PDGid=-100323
PDGid=100313
PDGid=30323
PDGid=-30323
PDGid=30313
PDGid=323
PDGid=-323
PDGid=313

G4beamline User’s Guide

195

kaon+

kaon-

kaon0

kaonOL
kaon0S
lambda
lambda(1405)
lambda(1520)
lambda(1600)
lambda(1670)
lambda(1690)
lambda(1800)
lambda(1810)
lambda(1820)
lambda(1830)
lambda(1890)
lambda(2100)
lambda(2110)
lambda_c+
mu+

mu-

neutron

nu_e

nu_mu

nu_tau

omega
omega(1420)
omega(1650)
omega-
omega3(1670)
omega_c0
opticalphoton
phi
phi(1680)
phi3 (1850)
pi(1300)+
pi(1300)-
pi(1300)0
pi+

pi-

pi0
pi2(1670)+
pi2(1670)-
pi2(1670)0
proton
rho(1450)+
rho(1450)-
rho(1450)0
rho(1700)+
rho(1700)-
rho(1700)0
rho+

rho-

rho0
rho3(1690)+

1/10/14 TIR

PDGid=321
PDGid=-321
PDGid=311
PDGid=130
PDGid=310
PDGid=3122
PDGid=13122
PDGid=3124
PDGid=23122
PDGid=33122
PDGid=13124
PDGid=43122
PDGid=53122
PDGid=3126
PDGid=13126
PDGid=23124
PDGid=3128
PDGid=23126
PDGid=4122
PDGid=-13
PDGid=13
PDGid=2112
PDGid=12
PDGid=14
PDGid=16
PDGid=223
PDGid=100223
PDGid=30223
PDGid=3334
PDGid=227
PDGid=4332
PDGid=0
PDGid=333
PDGid=100333
PDGid=337
PDGid=100211
PDGid=-100211
PDGid=100111
PDGid=211
PDGid=-211
PDGid=111
PDGid=10215
PDGid=-10215
PDGid=10115
PDGid=2212
PDGid=100213
PDGid=-100213
PDGid=100113
PDGid=30213
PDGid=-30213
PDGid=30113
PDGid=213
PDGid=-213
PDGid=113
PDGid=217

G4beamline User’s Guide

196

rho3(1690)-
rho3(1690)0
s_quark
sd0_diquark
sdl diquark
sigma(1385)+
sigma(1385)-
sigma(1385)0
sigma(1660)+
sigma(1660)-
sigma(1660)0
sigma(1670)+
sigma(1670)-
sigma(1670)0
sigma(1750)+
sigma(1750)-
sigma(1750)0
sigma(1775)+
sigma(1775)-
sigma(1775)0
sigma(1915)+
sigma(1915)-
sigma(1915)0
sigma(1940)+
sigma(1940)-
sigma(1940)0
sigma(2030)+
sigma(2030)-
sigma(2030)0
sigma+
sigma-
sigma0

sigma c+
sigma c++
sigma c0

ssl diquark
su0_diquark
sul diquark
t_quark

tau+

tau-

triton
u_quark
ud0_diquark
udl_diquark
uul diquark
xi(1530)-
xi(1530)0
xi1(1690)-
x1(1690)0
xi(1820)-
x1(1820)0
xi(1950)-
xi1(1950)0
xi1(2030)-

1/10/14 TIR

PDGid=-217
PDGid=117
PDGid=3
PDGid=3101
PDGid=3103
PDGid=3224
PDGid=3114
PDGid=3214
PDGid=13222
PDGid=13112
PDGid=13212
PDGid=13224
PDGid=13114
PDGid=13214
PDGid=23222
PDGid=23112
PDGid=23212
PDGid=3226
PDGid=3116
PDGid=3216
PDGid=13226
PDGid=13116
PDGid=13216
PDGid=23224
PDGid=23114
PDGid=23214
PDGid=3228
PDGid=3118
PDGid=3218
PDGid=3222
PDGid=3112
PDGid=3212
PDGid=4212
PDGid=4222
PDGid=4112
PDGid=3303
PDGid=3201
PDGid=3203
PDGid=6
PDGid=-15
PDGid=15

PDGid=1000010030

PDGid=2
PDGid=2101
PDGid=2103
PDGid=2203
PDGid=3314
PDGid=3324
PDGid=23314
PDGid=23324
PDGid=13314
PDGid=13324
PDGid=33314
PDGid=33324
PDGid=13316

G4beamline User’s Guide

197

xi(2030)0 PDGid=13326
xi- PDGid=3312
xi0 PDGid=3322

xi_c+ PDGid=4232
xi_c0 PDGid=4132

1/10/14 TIR G4beamline User’s Guide 198

Appendix 7 — Error Messages

Errors and warnings generated during execution are handled by the G4Exception function; they are
printed as a 7-line message starting and ending with a row of asterisks — that makes them stand out

visually in a long printout. Those that are issued by a routine beginning with “G4” came from Geant4

code, while those issued by a routine beginning with “BL” came from G4beamline code; those that are
issued by a command name are also from G4beamline code. This list may not be complete; it does not
attempt to list all error messages from libraries such as Geant4, CLHEP, GSL, Openlnventor, OpenGL,

FFTW, Xwindows, etc.

Exception Severity | Discussion

001 Warning | G4HadronicProcess — this is a coding error and is being
investigated by the Geant4 team. It is rare and can be
ignored unless a large number of tracks are affected

Alarm Signal Fatal The alarm timer fired. This timer is set 10 seconds longer
than the eventTimeLimit, and will only fire if no steps were
taken during those extra 10 seconds. Usually indicates an
infinite loop somewhere in the program.

Missing material Fatal The specified material cannot be found.

UnknownParticle Fatal The specified particle does not exist.

Cannot Tune Fatal The pillbox cannot be tuned properly.

Tune Iteration Limit Fatal The pillbox tuning did not converge.

Invalid Step Fatal The pillbox tuning made an invalid step.

Tuning failed to converge | Fatal Tuning did not converge.

Overwriting input file Fatal The trackermode filename is the same as the parameter
histoFile, which will overwrite the previous run’s Root file.

Duplicate trackerplane-s | Fatal Two or more trackerplane-s have the same name.

No Trackers Fatal The trackermode command has no trackers to control.

Invalid Start Expr Fatal The tune command has an invalid argument.

Iteration Limit Fatal The tune command did not converge within the limit.

Invalid Tune Expr Fatal The tune command has an invalid argument.

Failed to Converge Fatal The tune command did not converge.

Out of Memory Fatal Not enough memory.

Failed to achieve required | Fatal The coil command could not achieve the required accuracy

accuracy in constructing the field map, given the limits on its size.

Material not found Fatal The named material does not exist.

Invalid Coordinate Type | Fatal Invalid coordinate argument

Invalid init during Event Internal coding error.

tracking

Invalid start Fatal The start command is not valid.

Cannot determine Event The reference coordinates are not unique at the start of this

reference coordinate track. Probably means that radiusCut is omitted or too large

segment in some corner or cornerarc command.

Coordinate Object Event Internal coding error.

Missing

1/10/14 TIR

G4beamline User’s Guide

199

Reference Coordinates Fatal Reference coordinates specified, but no applicable reference

not available particle was tracked.

Output File Exists Fatal To prevent confusion BLFieldMap will not overwrite an
existing file.

Nesting > 64 Fatal Groups can only be nested to 64 levels.

Object Already Exists Fatal The name of an object is not unique.

Already Initialized Fatal Internal coding error.

No Physics Registered Fatal No physics command in the input file.

No beam Registered Fatal No beam command (or other beam).

G4VIS_USE not defined | Fatal Attempt to use visualization, but the program has no
visualization compiled into it.

Coordinates got lost Event Internal coding error.

Stuck Track Track A track has taken >100 steps without moving significantly.
This is usually a very low energy track on a boundary.

Event time limit Event Simulating the event has taken more real time than the
parameter eventTimeLimit.

Erroneous call to ... Fatal Internal coding error.

Cannot find NTuple Fatal NTuple name not found in Root file.

Cannot run beam Fatal Internal coding error.

Geometry not closed Fatal Internal coding error.

Cannot read viewers.def | Fatal Visualization requested, but cannot find the file viewers.def
that defines the viewers (it is normally in the G4beamline
install directory).

Viewer not defined Fatal A viewer was requested that does not exist.

Large Primary TrackID Warning | A beam track was read with TrackID > 1000, which can be

confused with new secondary tracks having such TrackID-s.

See section 7.14.

1/10/14 TIR

G4beamline User’s Guide

200

References

[1] Geant4 — http://geant4.cern.ch

[2] CLHEP — http://proj-clhep.web.cern.ch/proj-clhep

[3] HistoScope — http://fermitools.fnal.gov/abstracts/histoscope/abstract.html

[4] The MICE Collaboration — http://mice.iit.edu

[5] Root — http://root.cern.ch

[6] “Beam simulation tools for GEANT4 (and neutrino source applications)”, hep-ex/0210057

[7] Cygwin — http://www.cygwin.com

[8] ffmpeg — http://www.ffmpeg.org

[9] Coin — The Coin 3D graphics library — http://coin3d.org

[10] Gnuplot — http://www.gnuplot.info/

[11] OpenMPI — http://openmpi.org

[12] NERSC: http://nersc.gov, the supercomputer itself is http://hopper.nersc.gov.

[13] Cosy Infinity: http://www.bt.pa.msu.edu/index cosy.htm

1/10/14 TIR G4beamline User’s Guide

201

