

MANX- Toward Bright Muon Beams for Colliders, Neutrino Factories, and Muon Physics

Rolland P. Johnson Muons, Inc. (<u>http://www.muonsinc.com/</u>)

Abstract: New inventions are improving the prospects for high luminosity muon colliders for Higgs or Z' factories and at the energy frontier. Recent analytical calculations, numerical simulations, and experimental measurements are coming together to make a strong case for a series of devices or machines to be built, where each one is a precursor to the next. If chosen correctly, each device or machine with its own unique experimental and accelerator physics programs can drive the development of muon cooling and acceleration theory and technology. This strategy can achieve an almost unlimited program of experimental physics based on the cooling and acceleration of muon beams. The very first step of the program is to develop stopping muon beams by using a 6D muon cooling segment (momentumdependent Helical Cooling Channel with emittance exchange using a homogeneous energy absorber) to test the theory and simulations and to improve the mu2e experiment.

http://www.muonsinc.com/tiki-index.php?page=Papers+and+Reports

Rol - Feb. 3, 2009

AAC Meeting

1

Ultimate Goal:

High-Energy High-Luminosity Muon Colliders

- precision lepton machines at the energy frontier
- achieved in physics-motivated stages that require developing inventions and technology, e.g.
 - MANX
 - demonstrate HCC, HS, & EEX concepts
 - high-intensity proton driver
 - simultaneous intense muon beams
 - stopping muon beams
 - useful 6D cooling w HCC, EEX
 - neutrino factory
 - HCC with RF, RLA in CW Proj-X
 - Z' factory
 - low Luminosity collider, HE RLA
 - Higgs factory
 - extreme 6D cooling, low beta, super-detectors
 - energy-frontier muon collider
 - more cooling, lower beta

LEMC Scenario

Muons, Inc.

Simulation study of HCC for Muon Collider (MC)

U,	Muons,	Inc. Muons, I	nc. Proj	ject Hi	story
	Year	Project Expe	cted Funds	Research I	Partner
	2002	Company founded			
	2002-5	High Pressure RF Cavity	\$600,000	IIT	(Dan K.)
	2003-7	Helical Cooling Channel	\$850,000	Jlab	(Slava D.)
	2004-5 [†]	MANX demo experiment	\$ 95,000	FNAL TD	(Victor Y.)
	2004-7	Phase Ionization Cooling	\$745,000	Jlab	(Slava D.)
	2004-7	HTS Magnets	\$795,000	FNAL TD	(Victor Y.)
	2005-9	Reverse Emittance Exch.	\$850,000	Jlab	(Slava D.)
	2005-9	Capture, ph. rotation	\$850,000	FNAL AD	(Dave N.)
_	2006-9	G4BL Sim. Program	\$850,000	IIT	(Dan K.)
	2006-9	MANX 6D Cooling Demo	\$850,000	FNAL TD	(M. Lamm)
	2007-10	Stopping Muon Beams	\$750,000	FNAL APC	(Chuck A.)
	2007-10	HCC Magnets	\$750,000		(Sasha Z.)
-	2007-8†	Compact, Tunable RF	\$100,000		(Milorad)
	2008-9	Pulsed Quad RLAs	\$100,000	Jlab	(Alex B.)
	2008-9	Fiber Optics for HTS	\$100,000	FSU	(Justin S.)
•	2008-9	RF Breakdown Studies	\$100,000	LBNL	(Derun L.)
	2008-9	Rugged RF Windows	\$100,000	Jlab	(Bob Rimmer)
	2008-9	H2-filled RF Cavities	\$100,000		(Katsuya)
	2008-9	MANX, Collider low beta e explicitly related to HCC ~\$3.5M spe	\$150,000 ent. \$1.3 M left	NIU DCEC)(D. Hedin)
F	Rol - Feb. 3, 2009	AAC Mee			5

- Each particle loses momentum by ionizing a low-Z absorber
- Only the longitudinal momentum is restored by RF cavities
- The angular divergence is reduced until limited by multiple scattering
- Successive applications of this principle with clever variations leads to small emittances for many applications
- Early work: Budker, Ado & Balbekov, Skrinsky & Parkhomchuk, Neuffer

Muons, Inc. Transverse Emittance IC

The equation describing the rate of cooling is a balance between cooling (first term) and heating (second term):

• Here ε_n is the normalized emittance, E_{μ} is the muon energy in GeV, dE_{μ}/ds and X_0 are the energy loss and radiation length of the absorber medium, β_{\perp} is the transverse beta-function of the magnetic channel, and β is the particle velocity.

Note that

 $\frac{d\varepsilon_n}{\varepsilon_n} \approx -\frac{dE_{\mu}}{E}$ which implies a ~1.5 GeV linac for 10⁻⁶

Muons, Inc. Wedges or Continuous Energy Absorber for Emittance Exchange and 6d Cooling

Figure 1. Use of a Wedge Absorber for Emittance Exchange

Figure 2. Use of Continuous Gaseous Absorber for Emittance Exchange

Ionization Cooling is only transverse. To get 6D cooling, emittance exchange between transverse and longitudinal coordinates is needed. THIS RH CONCEPTUAL PICTURE BE REALIZED? A MANX GOAL!

Rol - Feb. 3, 2009

Helical Cooling Channel

Continuous, homogeneous energy absorber for longitudinal cooling Helical Dipole magnet component for dispersion Solenoidal component for focusing Helical Quadrupole for stability and increased acceptance

BNL Helical Dipole Siberian Snake magnet for AGS spin control

Rol - Feb. 3, 2009

Two Different Designs of Helical Cooling Magnet

Great new Kashikhin-Yonehara innovation!

Rol - Feb. 3, 2009

AAC Meeting

🛟 Fermilab

6-Dimensional Cooling in a Continuous Absorber

- Helical cooling channel (HCC)
 - Continuous absorber for emittance exchange
 - Solenoidal, transverse helical dipole and quadrupole fields
 - Helical dipoles known from Siberian Snakes
 - z- and time-independent Hamiltonian
 - Derbenev & Johnson, <u>Theory of HCC</u>, April/05 PRST-AB
 - http://www.muonsinc.com/reports/PRSTAB-HCCtheory.pdf

Muons, Inc. Particle Motion in a Helical Magnet

Combined function magnet (invisible in this picture) Solenoid + Helical dipole + Helical Quadrupole

Red: Reference orbit

Blue: Beam envelope

Dispersive component makes longer path length for higher momentum particles and shorter path length for lower momentum particles.

Opposing radial forces $F_{h-dipole} \approx p_z \times B_{\perp}; \quad b \equiv B_{\perp}$

$$F_{solenoid} \approx -p_{\perp} \times B_z; \quad B \equiv B_z$$

Transforming to the frame of the rotating helical dipole leads to a time and z – independent Hamiltonian

b' added for stability and acceptance

Some Important Relationships

Hamiltonian Solution

 $p(a) = \frac{\sqrt{1 + \kappa^2}}{k} \left[B - \frac{1 + \kappa^2}{\kappa} b \right] \qquad k = 2\pi/\lambda \qquad \kappa = ka$ $q = \frac{k_c}{k} - 1 = \beta \sqrt{\frac{1 + \kappa^2}{3 - \beta^2}} \qquad k_c = B\sqrt{1 + \kappa^2}/p$

Longitudinal cooling only

Equal cooling

decrements

$$\hat{D} \equiv \frac{p}{a} \frac{da}{dp} = 2 \frac{1 + \kappa^2}{\kappa^2} \qquad q = 0$$

$$\text{-Momentum slip}_{\text{factor}} \quad \eta = \frac{d}{d\gamma} \frac{\sqrt{1+\kappa^2}}{\beta} = \frac{\sqrt{1+\kappa^2}}{\gamma\beta^3} \left(\frac{\kappa^2}{1+\kappa^2} \hat{D} - \frac{1}{\gamma^2} \right) \quad \frac{\kappa^2}{1+\kappa^2} \hat{D} \sim \frac{1}{\gamma_{transition}^2}$$

HCC Virtues

New concept not FODO, but based on a theory (theory by Derbenev) time and z-independent Hamiltonian solenoid, helical dipole, helical quad fields two versions: with or without RF Large acceptance for huge muon beam emittances large resonance driving terms Homogeneous field minimal resonant losses DE/E for a million in 6D reduction implies a long channel Many uses for muon beams (overview by Mary Anne)

Example of longitudinal cooling in a HCC overcomes $1/\beta^2$ dependence of energy loss to keep the momentum spread small while undergoing energy degradation to slow a muon beam.

MERIT-like targetry into NF/MC Front End up to End of Energy/Phase Rotator into HCC w/o RF w/ tapered LiH wedges variably spaced to match energy loss while maintaining reference radius of 50 cm. The z value refers to depth from start of HCC.

Example of HCC use for the mu2e experiment discussed by Ankenbrandt and Yonehara

HCC Magnets using HTS

Beam cooling to reduce the size of a muon beam depends on the magnetic field strength. The Phase II proposal to develop this hybrid scheme has been approved. Here a hybrid magnet of Nb3Sn (green) and HTS (red) could provide up to 30 T in an HCC design.

Rol - Feb. 3, 2009

Muons, Inc. many new ideas under development:

H₂-Pressurized RF Cavities **Continuous Absorber for Emittance Exchange Helical Cooling Channel** Parametric-resonance Ionization Cooling **Reverse Emittance Exchange** RF capture, phase rotation, cooling in HP RF Cavities **Bunch coalescing** Very High Field Solenoid magnets for better cooling p-dependent HCC precooler HTS for extreme transverse cooling MANX 6d Cooling Demo improved mu2e design

See <u>http://www.muonsinc.com/</u> "papers and reports" 42 Abstracts for PAC09 21 Papers from EPAC08 13 Papers from PAC07 Rol - Feb. 3, 2009 AA

MANX, A 6D MUON BEAM COOLING EXPERIMENT

Robert Abrams¹, Mohammad Alsharo'a¹, Andrei Afanasev¹, Charles Ankenbrandt¹, Emanuela Barzi², Kevin Beard¹, Alex Bogacz³, Daniel Broemmelsiek², Yu-Chiu Chao³, Linda Coney⁴, Mary Anne Cummings¹, Yaroslav Derbenev³, Henry Frisch⁵, Ivan Gonin², Gail Hanson⁴, David Hedin⁶, Martin Hu², Valentin Ivanov¹, Rolland Johnson¹, Stephen Kahn¹, Daniel Kaplan⁷, Vladimir Kashikhin², Moyses Kuchnir¹, Michael Lamm², James Maloney⁶, Michael Neubauer¹, David Neuffer², Milord Popovic², Robert Rimmer³, Thomas Roberts¹, Richard Sah¹, Pavel Snopok⁴, Linda Spentzouris⁷, Melanie Turenne¹, Daniele Turrioni², Victor Yarba², Katsuya Yonehara², Cary Yoshikawa¹, Alexander Zlobin²

¹Muons, Inc.

²Fermi National Accelerator Laboratory
 ³Thomas Jefferson National Accelerator Facility
 ⁴University of California at Riverside
 ⁵University of Chicago
 ⁶Northern Illinois University
 ⁷Illinois Institute of Technology

^{*} Contact, <u>rol@muonsinc.com</u>, (757) 870-6943

Overview of MANX channel

Rol - Feb. 3, 2009

HS for Cooling Demonstration Experiment Goals: cooling demonstration, HS technology development Features: SSC NbTi cable, Bmax~6 T, coil ID ~0.5m, length ~10m

Rol - Feb. 3, 2009

Muons, Inc. **HCC Magnets for MANX**

Prototype coils for MANX have been designed and modeled. Construction of a 4-coil assembly using SSC cable is complete. Tests in the TD vertical Dewar are complete. Since the MANX matching sections are made of coils with varying offset, they are more expensive than the cooling region. Consequently the total magnet cost can be drastically reduced if the matching sections are not needed. See talk by Kashikhin.

Muons, Inc. Simpler Option without Matching Sections

Rol - Feb. 3, 2009

AAC Meeting

23

Summary: MANX

Will Test:

- Theory of Helical Cooling Channel (HCC)
 - p-dependent HCC with continuous absorber
- Helical Solenoid Magnet (HS) and absorber
 - similar to those required to upgrade the mu2e experiment
- Simulation programs (G4BL, ICOOL)
- Encourages wider interest in muon cooling for Fermilab's future
 - Adds Energy Frontier and Stopping Muon Beam HEP Experimenters
 - Local universities especially important
 - RAL and MICE connect to European and Asian communities
- Minimizes costs and time
 - no RF, uses normalized emittance, ~5 m LHe E absorber
 - builds on MICE, improves 6-D capability, ~ps detectors
 - RF is developed in parallel with new concepts
- Collaborators have been asked to address AAC charge:

AAC Charge/Possible Responses

If successfully executed does the MANX proposal provide a validation of 6-D ionization cooling, based on requirements for a Muon Collider. What does the Committee view as the optimum mix of simulations and experimental demonstration required to provide such validations?
Collection, cooling, extreme cooling, transport, acceleration of muon beams for MC
Require several new techniques and technologies
MANX demonstrates a new HCC approach to cooling large emittance beams
Homogeneous magnetic fields can cope better with resonances
MANX demonstrates a new method of emittance exchange

•If successfully executed does the MANX proposal provide a validation of an upgrade of the mu2e experiment based on a collection scheme that reduces "flash" deadtime and the use of the ionization-cooling energy-absorber to range out hadronic backgrounds? What does the Committee view as the optimum mix of simulations and experimental demonstration required to provide such validations?

Degrading the higher momentum, higher flux part of π and μ production spectra
Gets higher mu/proton, without magnetic mirrors that imply a long flash gate
Longitudinal cooling with EEX concentrates the stopping beam in the target while
Hadronic backgrounds are ranged out (also reduces flash gate time)

AAC Charge/Possible Responses

•What are the primary technical risks within the MANX proposal and are they appropriately mitigated through the development period?

Timely commitment of manpower and funds
MICE delays
Engineering escalations for additional capabilities beyond liquid helium
vacuum, hydrogen E degrader
with Individually powered coils: power supplies, SC leads,

Given the anticipated timelines within the Muon Five-year Proposal and the mu2e development plan, what is the appropriate schedule for implementation of MANX, either at Fermilab or at RAL?
To follow MICE at RAL, coordination and continuity are required
Sooner would be better

Do the MANX resource requirements appear reasonably estimated?
Iteration on 4-coil design will improve magnet estimates
Cryostat, power supplies, matching sections, reuse of MICE detectors, designs

Can the MANX approach to a mu2e upgrade impact the outlook for Project X?
If the energy absorber approach works,
higher mu flux is possible, and higher p flux required

AAC Agenda

8:30-8:50 Slava Derbenev Theory of the HCC History, derivation, epicyclic channel Mary Anne Cummings Uses of the HCC 8:50-9:10 Muon collection, 6D and extreme cooling, for MC, NF, and mu2e Chuck Ankenbrandt Mu2e applications 9:10-9:35 Overview, upgrade to HCC-MANX magnet, relationship to Project X 9:35-9:55 Vladimir Kashikhin Helical Solenoid Magnet concept, 4-coil model, cost estimates 9:55-10:20 break 10:10-10:40 Katsuya Yonehara MANX HCC concepts, MC goals, simulations 10:40-11:00 Bob Abrams MANX design Detectors, relationship to MICE G4 simulations, MANX@RAL 11:00-11:20 Tom Roberts Simulation questions, timeline, MICE viewpoint

Rol - Feb. 3, 2009